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6 CHAPTER 6 CLIMATE CHANGE PROJECTION METHODS

The key sources of uncertainties in climate change data 

from global climate models are discussed in Section 6.1, 

followed by a description of the method used to summarise 

their outputs (Section 6.2). An outline of downscaling and 

how it is used to provide additional and complementary 

insights to global climate model simulations is described 

in Section 6.3. The B nal section describes how model 

evaluation, process understanding, attribution of 

observed trends and consistency with simulated recent 

changes, and downscaled projections are used to derive 

conB dence statements for climate change projections. 

These conB dence statements give guidance about the 

robustness of the projections, and act to support users 

when implementing these projections in further analysis, 

impact assessment and adaptation planning.

The Australian climate change projections are based on the full body of knowledge of the climate 

system and the most up to date view of how the current climate may change under enhanced 

greenhouse gas emissions. This view of future climate is informed by sophisticated global climate 

models, simulating the climate response to a range of plausible scenarios of how greenhouse gases 

and aerosols may change throughout the 21st century. This chapter outlines the methods for producing 

projections and accompanying conB dence ratings. Note that methods unique to the marine projections 

will be covered where those projections are presented in Chapter 8.

6.1 LIMITATIONS AND UNCERTAINTIES IN 

CLIMATE CHANGE DATA 

6.1.1 SOURCES OF UNCERTAINTY

Uncertainties in regional climate change projections can be 

grouped into three main categories: scenario uncertainty, 

due to the uncertain future emissions and concentrations 

of greenhouse gases and aerosols; response uncertainty, 

resulting from limitations in our understanding of the 

climate system and its representation in climate models; 

and natural variability uncertainty, the uncertainty 

stemming from unperturbed variability in the climate 

system. Figure 6.1.1 illustrates the relative contributions of 

these three broad sources of uncertainty to regional climate 

projections as estimated from 28 CMIP5 simulations for two 

variables, mean temperature and rainfall in winter (Hawkins 

and Sutton, 2009). The plot shows the contribution to 

uncertainty for a projection of decadal mean climate for 

diS erent times in the future. Please note that the relative 

contributions also depend on the climatic variable, spatio-

temporal aggregation and location (see discussion below).
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FIGURE 6.1.1: FRACTIONAL CONTRIBUTION OF INTERNAL VARIABILITY (ORANGE), SCENARIO (GREEN), AND RESPONSE UNCERTAINTY 
(BLUE) TO TOTAL UNCERTAINTY IN PROJECTED CHANGE IN TEMPERATURE (A) AND PRECIPITATION (B) IN SOUTHERN AUSTRALIA IN 
WINTER (JJA) BASED ON 28 CMIP5 MODELS (PRODUCED USING THE METHODS OF HAWKINS AND SUTTON, 2009).
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Scenario uncertainty results from the range of possible, but 

also unknown, future concentrations of greenhouse gases 

and aerosols in the atmosphere, due to emission rates by 

human activities, and their complex interactions with the 

biosphere and hydrosphere. This source of uncertainty is 

commonly characterised by simulating the climate change 

response to a range of concentration scenarios that 

encompass diS erent possible futures. In these projections, 

scenario uncertainty is considered through the use of 

Representative Concentrations Pathways (RCPs, see also 

Section 3.2). Each of the RCPs considered here represent 

a diS erent pathway of greenhouse gas concentrations 

and associated enhanced greenhouse eS ect, but all are 

treated as plausible. Up to around 2030, greenhouse gas 

concentrations in the various RCPs diS er only marginally 

and therefore scenario uncertainty is small. Its relative 

contribution to the total uncertainty increases over 

the future decades, becoming the dominant source of 

uncertainty for temperature by the end of the 21st century 

(green shading in Figure 6.1.1).

Response uncertainty results from limitations in our 

understanding of the climate system, our ability to simulate 

it and how it may evolve under diS erent RCPs. While 

climate models are all based on the same physical laws, 

they have diS erent conB gurations and use somewhat 

diS erent components and parameterisations, which lead to 

diS erences in their simulation of climate feedbacks and in 

long-term changes (also see Section 3.2 and 3.3). The largest 

diS erences between models are from cloud feedbacks 

and the impact of aerosols on clouds and precipitation 

(Myhre et al. 2013), oceanic heat uptake (Kuhlbrodt and 

Gregory, 2012) and carbon cycle feedbacks (Friedlingstein 

et al. 2014). Further, uncertainty in future changes in the 

Greenland and Antarctic ice sheets is particularly important 

for sea level projections (Church et al. 2011b). We estimate 

response uncertainty from examining the range of climate 

simulations from global climate models with diS erent, but 

equally acceptable, model conB gurations for a given RCP. 

While response uncertainty increases over the 21st century 

its relative contribution to total uncertainty generally peaks 

or plateaus around the middle of the century (blue shading 

in Figure 6.1.1).

Projected change in mean climate will be superimposed on 

natural climate variability. Natural variability uncertainty 

stems both from internal climate variability (e.g. the 

state of ENSO, see also Section 3.1.1) and natural external 

forcing mechanisms including future volcanic eruptions 

and changes in incoming solar radiation. Natural forcing 

mechanisms such as volcanic eruptions are typically 

not predictable into the future and are not included in 

simulations of the future so their contribution to the total 

projection uncertainty is not quantiB ed in this Report. 

Similarly, internal variability (e.g. the timing of El Niño 

events) cannot be predicted beyond a few months into 

the future. Model simulations do include these sources 

of natural variability, but their timing is not tied to those 

in observations. Instead, natural internal variability 

contributes to the total projection uncertainty and 

we quantify and display its contribution. This internal 

variability uncertainty is estimated from model experiments 

with varying initial conditions to re  ̂ect the range of 

possible future combinations of forced change and internal 

variability (see also Section 6.2). The relative importance 

of internal variability uncertainty generally decreases with 

time, as response and scenario uncertainty increase 

(Figure 6.1.1, orange shading). However, the relative 

contribution of internal variability uncertainty strongly 

depends on the location, on the spatio-temporal 

aggregation, and on the climatic variable analysed. In 

particular, internal variability uncertainty is generally larger 

at smaller spatial scales and for shorter averaging periods. 

Consequently, for regional climate change and variables 

with pronounced internal variability such as rainfall, 

internal variability uncertainty is always the largest source 

of uncertainty from one year to the next and can remain an 

important source of uncertainty for the long-term change 

(e.g. 10-year average) even at the end of the 21st century 

(Figure 6.1.1b).

6.1.2 INTERPRETATION OF RANGES OF CHANGE IN 

PROJECTIONS

In this Report, ranges of projected climate change for a 

given RCP are reported to indicate the range of plausible 

future outcomes. It is important to note, however, that 

not all sources of uncertainty are captured in the CMIP5 

ensemble, and the ensemble does not sample response 

uncertainty in a systematic way (Parker, 2013). Also, climate 

change projections are made for late in the century, for 

unobserved (novel) states of the atmosphere, which means 

that it is not possible to demonstrate their reliability. The 

ranges of change reported in this Report therefore do not 

relate directly to the probability of the real world changing 

under a given RCP. Rather, the projected range of change 

from model simulations can often give an indication 

of a lower bound of uncertainty, as not all sources of 

uncertainty are quantiB ed. However, in some particular 

cases where certain aspects of response uncertainty are 

uncertain the range of model changes may be larger than 

the physically plausible range of change. Additional lines 

of evidence, including model evaluation (Chapter 5) and 

processes driving change are used to assess the conB dence 

in the model range, as a guide to future change for a given 

scenario (Section 6.4).
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6.2 REGIONAL PROJECTION METHODS

6.2.1 OVERVIEW AND COMPARISON OF EXISTING 

REGIONAL PROJECTION METHODS

Climate projections are typically based on the output of 

climate models combined with knowledge about climate 

processes that help to contextualise and supplement 

the climate model outputs. Combining several model 

simulations into a model ensemble allows for an 

assessment of uncertainty (as outlined in previous section). 

However, several approaches exist to convert an ensemble 

of model simulations into climate change projections; 

some using model selection/weighting (based on model 

evaluation against observations) in an attempt to produce 

more ‘reliable’ projections. Many recent studies based 

on CMIP3 models have attempted to reduce uncertainty 

in projected climate change in Australia by only focusing 

on the better performing models (Charles et al. 2007, 

Perkins et al. 2007, Suppiah et al. 2007, Maxino et al. 2008, 

Moise and Hudson, 2008, Watterson, 2008, Chiew et al. 

2009b, Grose et al. 2010, Kirono and Kent, 2011, Smith and 

Chandler, 2010, Vaze et al. 2011). There is an assumption 

that the better performing models will give a narrower and 

more plausible range of projected change than the entire 

ensemble. However, there is considerable disagreement 

regarding the relative merits of the various models (Chiew 

et al. 2009b, Smith and Chandler, 2010), making it die  cult 

to justify a reduced set (Vaze et al. 2011).

There are some cases where researchers have selected 

a set of strong performing CMIP3 models based on a 

particular evaluation metric, with the range of uncertainty 

in projections narrowed in a potentially robust way. 

For example, Perkins et al. (2009) found less warming 

of extreme temperatures in models with stronger skill. 

However, sometimes diS erent preferred models can provide 

opposing signals of climate change, e.g. where Smith and 

Chandler (2010) found a tendency for stronger rainfall 

decrease in the Murray-Darling Basin in better performing 

models, but Cai et al. (2011) and Pitman and Perkins (2008) 

found tendencies for increase when using a diS erent set 

of preferred models. Other studies demonstrate cases 

where model selection had limited impact on the range of 

projected changes (Chiew et al. 2009b, Kirono and Kent, 

2011).

An alternative to picking the best few models is to reject 

the models that have particularly poor performance. There 

is, for example, some agreement on a small set of CMIP3 

models with consistently poor performance across a range 

of studies and metrics (Smith and Chandler, 2010, Cai et al. 

2011, Frederiksen et al. 2011, Vaze et al. 2011). For CMIP5, 

some poor-performing models have been identiB ed for 

Australia (Chapter 5). 

For Australia, we can consider the impact on projections 

when excluding models identiB ed as poor performers 

(Table 5.6.1 of Chapter 5). Figure 6.2.1 illustrates the eS ect 

for rainfall projections for the four large super-clusters. 

FIGURE 6.2.1: COMPARISON OF PROJECTED SEASONAL RAINFALL CHANGES ACCORDING TO RCP8.5 FOR FOUR SUPER-CLUSTERS 
IN AUSTRALIA WITH THE EMPIRICAL QUANTILES (EMP. QUANT.) OF THE FULL SET OF CMIP5 GCMS (DARK SHADED BARS) AND THE 
SUBSET EXCLUDING THE 10 MODELS THAT SCORE LOW ON A VARIETY OF EVALUATION METRICS IDENTIFIED IN CHAPTER 5 (LIGHT 
SHADED BARS).
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Projections using the empirical quantiles (median and 

percentiles of the model range) of the full set of CMIP5 

models are compared with projections from the better 

performing models (10 models being excluded due to 

low scores on at least 3 diS erent evaluation metrics; no 

projections data are available for CESM1-WACCM) 

(Fig. 6.2.1). Noteworthy diS erences are a somewhat reduced 

occurrence of strong rainfall increases in summer and 

autumn in Eastern Australia (and to a lesser extent in 

Southern Australia), and less evidence for strong summer 

drying in Northern Australia in the reduced set of models. 

However, overall diS erences between projections, including 

and excluding low-scoring models, are slight in most 

regions and seasons. Perhaps most importantly, selecting 

a subset of better performing models in this instance did 

not provide more clarity on the direction of the expected 

rainfall response.

In addition, performance-based weighting of models in 

regional projections has been widely used (Christensen 

et al. 2010). In many cases, however, performance in 

the current climate and future projections are only 

BOX 6.2.1: THE EFFECT OF DIFFERENT PROJECTION METHODS
Projections can be generated using several diS erent 

methods. Figure B6.2.2 demonstrates the eS ects of some 

of these methods, namely that of:

1. Spatial resolution: projections in some regions 

depend on the spatial resolution of the climate 

models. This applies in particular to the smaller 

regions with complex terrain, such as Tasmania, for 

which coarse resolution GCMs cannot represent 

potential small-scale diS erences in the climate change 

signal. The importance of spatial resolution is further 

analysed in this Report using downscaled data (see 

Section 6.3).

2. Selecting the ‘best’ models: selecting a subset of 

‘best’ models can have an impact on regional climate 

change projections, but the eS ect strongly depends 

on the metric and feature used to evaluate the models 

(see also Figure 6.2.1). For example, the 10 models 

that best represent the average rainfall, surface 

temperature and mean sea level pressure in Australia 

(Watterson et al. 2013a) indicate stronger drying for 

southern Australia, whereas the 10 models that best 

represent important modes of circulation variability in 

the southern hemisphere (Grainger et al. 2013, 2014) 

indicate less drying.

3. Constrained by observations: the eS ect of using 

observations (climatology or trends) as constraints is 

mostly small at the regional scale or is dependent on 

the speciB cs of the weighting method used. 

FIGURE B6.2.2: COMPARISON OF DIFFERENT METHODS TO PRODUCE PROJECTED CHANGES IN SOUTHERN AUSTRALIAN (A) 
ANNUAL TEMPERATURE AND (B) ANNUAL RAINFALL FOR 2080-99 WITH RESPECT TO 1986-2005 ACCORDING TO THE HIGHEST 
EMISSION SCENARIO (RCP8.5). FROM LEFT TO RIGHT THE PROJECTIONS USE ALL CMIP5 MODELS, HIGH- AND LOW-RESOLUTION 
MODELS ONLY, THE 10 TOP AND BOTTOM SCORING MODELS ACCORDING TO AN EVALUATION OF WATTERSON ET AL. (2013, 
DENOTED W2013) AND AFTER GRAINGER ET AL. (2013, DENOTED G2013), AND WEIGHTED BY HOW CLOSELY THE MODELS 
REPRESENT THE ANNUAL TEMPERATURE AND RAINFALL CLIMATOLOGY AND RECENT TRENDS FROM 1956-2005 RESPECTIVELY. 
IN THE LATTER CASES, TWO DIFFERENT WEIGHTING SCHEMES HAVE BEEN USED NAMELY BAYESIAN MODEL AVERAGING 
(BMA: MIN ET AL. 2007) AND ENSEMBLE REGRESSION (ER: BRACEGIRDLE AND STEPHENSON, 2012).
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weakly related (Knutti et al. 2010), and therefore using 

performance-based weights will have little eS ect on 

projections. Using non-optimal weights is more often than 

not worse than not weighting models at all (Weigel et al. 

2010).

Against this background, a number of scientists are taking 

the view that using the full range of available models, 

rather than a performance-based selection or weighting, 

is the most appropriate course of action for regional 

applications (Chiew et al. 2009b, Kirono et al. 2011a). Model 

evaluation results, however, may in  ̂uence the choice of 

individual models in some applications (Chapter 9).

Attempts have been made to infer a probability distribution 

of future climate change from projections of multiple 

models. Such probabilistic projections for Australia have 

been prepared using the ‘Reliability Ensemble Averaging’ 

(REA) approach (Moise and Hudson, 2008) and using a 

B tted Beta-distribution (Watterson, 2008, Watterson and 

Whetton, 2013), where Watterson’s approach (Section 

6.2.3) was used in Climate Change in Australia 2007 (CSIRO 

and BOM, 2007). Other approaches have been used to 

produce regional probabilistic projections elsewhere. 

These include fully probabilistic statistical models used to 

interpret the diversity of projected changes in multi-model 

ensembles, such as CMIP3 and CMIP5 (Tebaldi et al. 2005, 

Buser et al. 2009, Smith et al. 2009, Chandler, 2013). Indeed 

the growing number of methods to produce probabilistic 

projections re  ̂ects the lack of consensus on how best to 

interpret diversity in model results (Parker, 2013). 

In the absence of clear guidance on how best to form 

probabilistic projections from multiple climate models, 

and because the eS ect of diS erent projection methods 

is generally small (Box 6.2.1), we adopt a simple method 

to produce the projections presented in this Report. The 

speciB c choices and details are discussed in the following 

section. In the interest of comparing model results using 

the CMIP3 and CMIP5 models across Australia, the method 

used to generate the 2007 projections (based on the CMIP3 

models) is further applied to the CMIP5 dataset (Section 

6.2.3). 

6.2.2 PROJECTION METHODS USED IN THIS REPORT

Climate refers to the statistics of weather and therefore 

long-term averages are often used to characterise climate 

for a speciB c period and location. In this Report, 20-year 

averages of CMIP5 outputs are used to characterise change 

in the future climate.

The model-based projections are generally presented as 

the model ensemble median (50th percentile) and the 10th 

to 90th percentile range (see Box 6.2.2). That is, less than 

10 per cent of the models project changes that are smaller 

than the lower bound (10th percentile) and less than 10 per 

cent project changes that are larger than the upper bound 

(90th percentile). The median projected change (50th 

percentile) is the middle value of the simulated changes 

with half the models showing changes larger/smaller than 

the median.

In accordance with results reported in the latest Assessment 

Report of the Intergovernmental Panel on Climate Change 

(IPCC, 2013), the primary reference period used in this 

Report is 1986-2005. This period is used to demonstrate 

change in bar charts, maps, and tables; note that this is 

diS erent from the 1980-1999 period used in Climate Change 

in Australia 2007 (CSIRO and BOM, 2007). The more recent 

period is chosen partly because this period has more 

comprehensive observational data sets (aided by satellite 

measurements), which is important as the CMIP5 models are 

run with observed forcings as opposed to forcings based 

on diS erent RCPs from 2005 onwards. It is important to 

note, however, that natural internal variability does not fully 

average out in 20-year averages, as some sources of natural 

variability manifest on time scales greater than 20 years. 

This has to be taken into account when relating simulations 

(or projected change) to recent observations.

The time series plots, however, use a diS erent reference 

period, 1950-2005. The selection of a diS erent reference 

period is due to technical reasons in producing a visually 

representative time series plot where simulations of the 

historical and future time periods are merged into one 

long series. The use of a longer reference period more 

FIGURE 6.2.3 THE EFFECT OF USING DIFFERENT REFERENCE PERIODS WHEN RELATING SIMULATED AND OBSERVED CLIMATE TIME 
SERIES ILLUSTRATED WITH SPRING (MAM) RAINFALL IN SOUTH-WESTERN VICTORIA (SSVW). 20-YEAR AVERAGES OF SIMULATED AND 
OBSERVED RELATIVE ANOMALIES IN PER CENT OF THE 1986-2005 MEAN (A) AND OF THE 1950-2005 MEAN (B) ARE SHOWN. SHADING 
INDICATES THE 10TH TO 90TH PERCENTILE RANGE OF THE CMIP5 SIMULATIONS, THE SOLID LINE INDICATES THE MEDIAN.
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truthfully re  ̂ects our scientiB c understanding how these 

periods relate to each other. For example, the longer 

reference period is particularly important in cases when 

natural internal variability leads to a large deviation of 

the 1986-2005 mean from the ‘underlying’ (but unknown) 

climate (e.g. spring rainfall in western Victoria as shown 

in Figure 6.2.3). In this situation, the observations may 

appear to lie outside the simulated range for most of the 

20th century with a 1986-2005 reference period, whereas 

adopting a long reference period highlights the anomaly 

of the recent past with respect to the long-term mean. The 

change to a longer reference period is also necessary to 

avoid the false impression that the climate in 1986-2005 

is known exactly and thereby much more certain than the 

climate in 20-year periods earlier in the 20th century (Figure 

6.2.3). As a consequence of the diS erent reference periods, 

quantitative changes in time series plots diS er slightly from 

the corresponding changes reported in tables and bar plots. 

This diS erence illustrates the in  ̂uence of the choice of 

reference period in climate change projections.

WEIGHTING OF CLIMATE MODELS

Since there is no strong evidence to weight models, the 

possible detrimental eS ects of weighting and the small 

impact of model rejection (see above), we do not weight or 

exclude models. 

NATURAL INTERNAL VARIABILITY

Projected regional warming has been shown to diS er 

considerably across simulations when using diS erent 

initial conditions (Deser et al. 2012a, b). Hence, natural 

internal variability is an important contributor to the spread 

of projected climate change (see also Figure 6.1.1). The 

contribution of natural internal variability is illustrated in 

this Report by showing the range (10th to 90th percentile) 

of changes due to natural internal variability only (e.g. 

right-hand panel in Figure B6.2.4). This range is estimated 

from the spread of simulations for the 2080–99 time 

period using diS erent initial conditions (i.e. simulations that 

diS er only in their state of internal variability). All available 

simulations are used to estimate projected change. Some 

models provided multiple simulations, each with diS erent 

initial conditions and a distinct natural variability. To 

ensure that models get equal weight in the B nal projection, 

individual simulations of the same model are weighted with 

the inverse of the number of simulations.

MAPS OF PROJECTED CLIMATE CHANGE

Chapter 7 also uses maps, showing the 10th, 50th, and 90th 

percentile of projected climate change. Instead of using 

empirical quantiles, the method based on pattern scaling 

used in Climate Change in Australia 2007 (CSIRO and BOM, 

2007) has been adopted to illustrate the spatial pattern 

in projected climate change (Watterson, 2008). The two 

diS erent approaches are compared in the following section.

6.2.3 COMPARISON WITH CLIMATE CHANGE IN 

AUSTRALIA 2007

The Climate Change in Australia 2007 (CSIRO and BOM, 

2007) approach for generating probability density functions 

(PDFs) for climate change relies on ‘pattern scaling’ based 

on the assumption that the local change (on the scale 

resolved by the GCMs) is proportional to the amount of 

global warming. To represent uncertainty, a PDF for both 

the global warming (for each scenario and time in the 

future) and the local sensitivity to the warming (for each 

variable) is derived. The PDF for the global warming is 

derived from RCP8.5 simulations over the 21st century; 

consistent with the Fifth Assessment Report’s assessment 

for global warming, as noted in Section 3.6. The local PDF 

is derived by regression of values of the variable against 

the global mean temperature, using yearly data from the 

RCP8.5 simulation for CMIP5 (or scenario A1B for CMIP3). For 

consistency with the 2007 report, the overall skill scores 

for Australia presented in Table 5.2.2 are used as model 

weights using the baseline period 1986-2005 for both 

CMIP3 and CMIP5 projections. This provides a ‘change per 

degree’ B eld for each model, variable, season, and grid cell, 

which is then interpolated to a common 1-degree grid over 

Australia. The product of the global and local PDFs gives 

the combined PDF for the forced local change from which 

percentile changes are estimated. 

The pattern scaling approach has been further developed 

by Watterson and Whetton (2011) to include the 

contribution of natural decadal variability to the forced 

signal, and by Watterson and Whetton (2013) to allow 

for a time series representation of forced and random 

components matched to a long-term observed series. This 

is illustrated for the case of eastern Victorian temperature, 

shown in Figure 6.2.5b. It can be compared to the 

equivalent time series for the Southern Slopes Victoria 

East (SSVE) cluster in (a), derived using the present method 

(described in Box 6.2.2) from GCM simulated change. The 

span in (b) for the forced or underlying climate is similar to 

the shaded band in (a), and in this respect the PDFs provide 

similar results. DiS erences may indicate local eS ects of 

aerosols (included in (a) but not (b) as the PDFs are scaled 

from the long-term forced change) or limitations to the 

pattern-scaling theory. In this case the CMIP5 models are 

well calibrated in that each observed series falls within 

the 10th to 90th percentile ranges approximately 80 per 

cent of the time. In (b), an indication of how the observed 

series may link to the future span is provided, and a similar 

inference could be made in (a).
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BOX 6.2.2: PRESENTATION OF PROJECTED AREA-AVERAGE CHANGES

Time series plots and bar plots both illustrate projected 

climate change and how the simulated change relates to 

the current climate. The following paragraphs explain 

how to interpret each of the two plot types.

FIGURE B6.2.4: TIME SERIES OF OBSERVED AND SIMULATED CHANGE (A) AND PROJECTED CHANGE ACCORDING TO DIFFERENT 
SCENARIOS (B) FOR WINTER (JJA) RAINFALL IN SOUTHERN AUSTRALIA. PLEASE NOTE THE DIFFERENT REFERENCE PERIODS 
USED IN A AND B (SEE DISCUSSION IN SECTION 6.2.2). FOR EXPLANATIONS REGARDING THE KEY ELEMENTS SEE TEXT BELOW.

Time series plots: the range of model results is 

summarised using the median (1) and 10th to 90th 

percentile range of the projected change (2) in all 

available CMIP5 simulations. The change in mean climate 

is shown as 20-year moving averages (Figure B6.2.4a). 

Dark shading (2) indicates the 10th to 90th percentile 

range for 20-year averages, while light shading (3) 

indicates change in the 10th to 90th percentile for 

individual years. Where available, an observed time series 

(4) is overlaid to enable comparison between observed 

variability and simulated model spread. When CMIP5 

simulations reliably capture the observed variability, the 

overlaid observations should fall outside the light-shaded 

range in about 20 per cent of the years. To illustrate one 

possible future time series and the role of year to year 

variability, the time series of one model simulation is 

superimposed onto the band representing the model 

spread (5). Note 20-year running average series is plotted 

only from 1910 to 2090. 

Bar plots: similar to time series plots, bar plots also 

summarise model results using the median (1) and 10th 

to 90th percentile range of the projected change (2) in 

all available CMIP5 simulations. The extent of bars (2) 

indicates the 10th to 90th percentile range for diS erence 

in 20-year averages (reference period to a future period), 

while line segments (3) indicate change in the 20-year 

average of the 10th and 90th percentile, as calculated 

from individual years. The projection bar plots enable 

comparison of model responses to diS erent RCPs (6), 

where RCP2.6 is green, RCP4.5 is blue and RCP8.5 is purple 

(Figure B6.2.4b). The range of natural internal variability 

without changes in the concentration of atmospheric 

greenhouse gases and aerosols as prescribed by the RCP 

scenarios (see Section 6.2.2) is shown in grey (7). This 

range is estimated from the spread in projections for 

the period 2080-99 amongst simulations diS ering only 

in their initial conditions. In the above case, the median 

projection in all RCPs is for a decrease in winter rainfall. 

The models agree well on the magnitude of the decrease 

and therefore the spread in projected changes (coloured 

bars) is only slightly larger than due to natural internal 

variability alone (grey bar). In cases where the models do 

not agree on the magnitude and/or sign of the projected 

change, the range of projections is much larger than that 

due to natural internal variability.
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FIGURE 6.2.5: ANNUAL TEMPERATURE CHANGE FOR SSVE SHOWN AS TIME SERIES BASED ON THE PROJECTION METHOD FOR TIME 
SERIES USED IN THIS REPORT (A) AND THE PROJECTION METHOD USED IN CLIMATE CHANGE IN AUSTRALIA 2007 (CSIRO AND BOM, 
2007). THE DARK SHADED AREA IN (A) INDICATES THE 10TH TO 90TH PERCENTILE RANGE OF MOVING 20-YEAR AVERAGES, THE 
SOLID LINE IS THE MEDIAN OF THE CMIP5 SIMULATIONS. OVERLAID ARE THE OBSERVATIONAL SERIES AND MODELLED SERIES (AS 
IN BOX 6.2.2). THE BLACK LINE IN (B) IS THE DECADAL MEAN OBSERVED VALUES FOR EASTERN VICTORIA. THE OTHER SOLID LINES 
ARE THE 10TH, 50TH (MEDIAN) AND 90TH PERCENTILE SERIES FOR THE ‘UNDERLYING’ CLIMATE, BOTH IN THE PAST AND INTO THE 
FUTURE, AS FORCED BY RCP85, AND USING CMIP5 SENSITIVITY RANGES. THE DASHED LINES SHOW THE CORRESPONDING RANGE 
WHEN TAKING INTO ACCOUNT NATURAL INTERNAL VARIABILITY OF DECADAL MEANS IN ADDITION TO FORCED CHANGES.

Under pattern scaling, the projected changes for a speciB c 

time depend on the global warming and hence the RCP. 

In CSIRO and BOM, (2007), projections were given for 

forced change in 2030, 2050 and 2070, under the SRES 

scenarios. This Report uses mainly the periods 2020-

2039 and 2080-2099, under the RCPs (estimates for other 

times will be available from the corresponding website, 

see Chapter 9). There is also a six-year diS erence in the 

base period (the 2007 projections using the 1980-1999 

period). Typically, a later base period results in a slightly 

smaller projected change (see Figure 6.2.5). As a result of 

these various diS erences, the 2007 projections cannot be 

directly compared with those presented here. However, 

with regard to the response to global warming, scaling 

allows a comparison of the Australian projections based on 

the CMIP3 and CMIP5 ensembles under a common global 

warming case, as described further in Appendix A.

6.3 DOWNSCALING

This section gives a brief introduction to methods of 

downscaling, their advantages and limitations, how 

these methods are used in the report, where in Australia 

downscaling might provide most additional insight to 

complement global climate model (GCM) projections, and 

advice on availability of downscaled datasets in Australia. 

For more information about downscaling principles and 

practice, there are several useful reviews (Giorgi and 

Mearns, 1999, Wang et al. 2004b, Fowler and Wilby, 2007, 

Foley, 2010, Maraun et al. 2010, Rummukainen, 2010, Feser 

et al. 2011, Paeth and Mannig, 2013), and guidance material 

on selection and evaluation of downscaling methods for 

impact and adaptation planning is given in Ekström et al. 

(accepted). 

6.3.1 WHAT IS DOWNSCALING?

Downscaling as it is applied here is the process by which 

GCM outputs, with a typical spatial resolution of 100-

200 km, are translated into B ner resolution climate 

change projections. There are a number of reasons for 

downscaling, the most common ones being:

• GCMs may not be able to adequately represent the 

current climate of a particular region, or the change to 

the regional climate (e.g. because landscape features or 

weather systems are not well represented by GCMs),

• there may be an interest in studying potential impacts 

on atmospheric processes that are not well resolved by 

GCMs (e.g. convective storms),

• because of a desire for climate change projections 

with greater detail and B ne spatial resolution in impact 

assessments, guidance for decision making or adaptive 

planning.

There are many diS erent ways in which GCM outputs can be 

translated to B ner resolutions or even point locations. Some 

methods are nearly as complex as the GCMs themselves, 

while others merely involve adding the mean change, as 

given by the GCM, to observed data. As a general guide, 

downscaling methods can typically be categorised into 

three groups: dynamical downscaling, statistical downscaling 

and change factor methods. Dynamical downscaling means 

running a dynamical model also known as a Regional 

Climate Model (RCM) using output from a GCM as input, 

and statistical downscaling is doing the same but with a 

statistical model. Change factor methods are techniques 

of combining the change signal from GCM outputs with 

observed datasets and are therefore a simple form of 

downscaling. 

A B

CH a p t e r  S IX 85



Dynamical and statistical downscaling produce a projection 

with new information in the simulation of climate processes 

and the pattern of climate change (termed the climate 

change ‘signal’). Change factor methods don’t produce new 

information in the climate change signal (so don’t meet the 

somewhat stricter deB nition of downscaling). Downscaling 

will almost certainly create datasets that more closely 

match observations at the local scale (what we term climate 

realism). Depending on the method used, the downscaling 

method may also produce new information in the climate 

change signal that is more physically plausible than the host 

GCM (what we term physically plausible change) (Ekström et 

al. submitted). While climate realism is important in terms 

of practical applicability, physically plausible change is the 

crucial requirement for credible projections (Figure 6.3.1). 

Note, high climate realism does not equate with ability to 

show physically plausible change.

It would be reasonable to expect increasing ability to depict 

physically plausible change in the spatial and temporal 

dimension for downscaling methods of higher complexity. 

Unfortunately, while more complex methods may give 

richer information about climate change, a user’s ability 

to assess presence and characteristics of approach bias 

becomes much more die  cult simply due to the vast number 

of ways in which data can interact with model dynamics 

and parameterisation schemes (a similar argument could be 

made for more complex statistical methods). To avoid over-

reliance on any particular method and minimise exposure 

to potential approach biases, users of downscaling data are 

often asked to consider a range of diS erent downscaling 

methods when possible and to give the context from the 

GCM projections at the scale of the intended application. 

The process of choosing downscaling methods is discussed 

further in Chapter 9.

6.3.2 COMBINING INSIGHTS FROM DOWNSCALING 

AND GCM PROJECTIONS

A set of GCM projections is an informal ‘ensemble’, and the 

range of results between acceptable models gives some 

measure of the uncertainty in the projected climate change 

signal (see also Section 6.2). Downscaling may reveal 

additional regional detail in the climate change signal, but 

diS erent methods of downscaling produce diS erent results, 

so in fact reveal further uncertainty within climate change 

projections. Also, since many forms of downscaling are 

computationally demanding or require speciB c inputs, they 

are often run with a limited subset of GCMs and emissions 

scenarios. Therefore, to fully sample the uncertainties 

from all available global modelling and downscaling, some 

systematic experimental design is required. 

Such a design should use multiple downscaling methods 

and adequately sample emission scenarios and the range of 

GCM projections. This has been attempted in the upcoming 

FIGURE 6.3.1: THE REALMS OF DOWNSCALING. IDEALLY, A 
DOWNSCALING METHOD SHOULD BE SKILFUL IN TERMS OF 
GENERATING DATA WITH HIGH CLIMATE REALISM AND HIGH 
PHYSICALLY PLAUSIBLE CHANGE, PRODUCING DATA SETS THAT 
ARE APPLICABLE TO REAL WORLD STUDIES AND PHYSICALLY 
CREDIBLE.

The merits of downscaling must be assessed in the context 

of what information about change is inherited from the 

host models (in this case, global climate models), and what 

is added. The degree of climate realism can be assessed 

by comparing downscaled data to observed climate 

characteristics, and downscaling often performs very well 

in this regard. However, assessing physically plausible 

change is more challenging and comprises an assessment 

of the plausibility of large-scale change inherited from 

the host GCM and the regional-scale change produced 

in the downscaling. The physical plausibility that may be 

added by downscaling can be broken down into approach 

capability and approach bias, where the former represents 

the theoretical ability of a particular approach to estimate 

certain aspects of change and the latter concerns the 

approach-speciB c bias that any particular method may 

exhibit due to its theoretical formulation (Ekström et al. 

accepted) (Figure 6.3.2).

FIGURE 6.3.2: CONCEPTUAL MODEL SHOWING THE 
RELATIONSHIP BETWEEN DOWNSCALING APPROACHES 
OF DIFFERENT COMPLEXITY WITH APPROACH CAPABILITY 
AND APPROACH BIAS. DARKER SHADING DENOTES HIGHER 
CAPABILITY/ABILITY (EKSTRÖM ET AL. ACCEPTED).
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set of projections in the North American Regional Climate 

Change Assessment Program (NARCCAP), sampling a 

representative set of runs from a GCM-RCM ‘matrix’ 

(Mearns et al. 2009). A similar approach was taken in the 

European ENSEMBLES program (Christensen et al. 2009, 

Kendon et al. 2010). Of regional interest is the Coordinated 

Regional Climate Downscaling Experiment project 

(CORDEX) for Australasia (http://wcrp-cordex.ipsl.jussieu.

fr/), which will provide a sampling of a GCM-downscaling 

‘matrix’ (both dynamical and statistical) for all of Australia 

when complete (Evans, 2011).

There is currently no set of systematically produced 

GCM-RCM climate projections available that covers the 

entire continent. However, two diS erent downscaled 

projections were produced for this project and there 

are several regional climate change studies that have 

produced valuable insights (listed below). These outputs 

do not represent a systematic sampling of GCM and 

downscaling uncertainty. Therefore the CMIP5 ensemble is 

the primary tool for examining projected climate change 

in Australia in this Report, and downscaling data is used 

as a complementary source of information; reported only 

where and when it is felt that it provides compelling ‘added 

value’ about the climate change signal. We particularly 

look for cases where the downscaling shows higher physical 

plausible change than GCMs due to regional in  ̂uences. 

Most of the content in this Report discusses the regional 

insights that downscaling provides under a high emissions 

scenario (RCP8.5) for the end of the century, when the 

climate change signal is at its strongest. This emphasises the 

regional scale patterns that are revealed by downscaling, 

which is useful for qualitative interpretations. However, 

currently there is no fully representative and complete 

GCM-RCM dataset suitable for quantitative analysis to 

accompany these regional insights.

6.3.3 STATISTICAL AND DYNAMIC DOWNSCALING 

METHODS USED

Statistical downscaling is not a change factor method of the 

variable itself, it refers to a model that utilises a statistical 

relationship between the local-scale variable of interest and 

larger-scale atmospheric B elds. This is achieved through 

regression methods (e.g. multiple regression statistics, 

principal component or canonical correlation analysis, 

neural networks), weather typing or through the use of 

weather generators calibrated to the large atmospheric 

B elds. We report results from the Bureau of Meteorology 

analogue-based Statistical Downscaling Model (SDM) for 

Australia (Timbal et al. 2009).

Dynamical downscaling is the use of a numerical climate 

model operating at a B ner spatial resolution (compared to 

GCMs), using the broad-scale climate change from a GCM 

as input. There are various conB gurations of dynamical 

downscaling models, but most are atmosphere-only 

models (using the SSTs from the ‘host’ GCM), and have 

B ne resolution only over the area of interest. There are 

two main types used for downscaling in Australia: variable 

resolution global models and limited area models. We 

report on results from the CCAM variable resolution global 

model (McGregor and Dix, 2008) plus other downscaled 

outputs where available.

6.3.4 PROS AND CONS OF STATISTICAL AND 

DYNAMICAL DOWNSCALING

Statistical downscaling (such as the BOM-SDM) will almost 

certainly produce greater climate realism than the host 

model, but may still have some level of approach bias 

compared to an observed dataset, both in spatial and 

temporal distributions. In terms of physically plausible 

change, statistical downscaling is likely to produce more 

spatial and temporal detail in the climate change signal 

compared to the GCM. This change signal could be more 

plausible compared to that of the host model, especially 

around areas of important topography and coastlines. The 

outputs may also have greater physically plausible change in 

the simulation of temporal distributions, both in the current 

climate and in the projected change in variability. However, 

many statistical techniques are not suited to simulating 

extremes, especially those extremes for which there are 

no historical precedent. Also, statistical downscaling does 

not produce a full suite of internally-consistent variables; 

it is generally done for a limited set of variables (typically 

temperature and rainfall).

Dynamical downscaling produces a suite of internally-

consistent variables that have the potential to show a 

complete spatial and temporal response in the climate to 

the scenario, including events without historical precedent. 

The climate realism in dynamical models can be relatively 

high, but outputs will contain some inevitable approach 

biases compared to observations. This means that the 

outputs are not suitable for direct use into sophisticated 

impact analysis models and therefore require bias 

correction. Dynamical downscaling has great potential to 

produce physically plausible change on the regional-scale, 

in terms of spatial distribution (particularly in areas with 

a strong in  ̂uence of topography or coastlines on the 

climate), and in temporal distribution, including extremes 

(i.e. the method has high approach capability). However, 

this potential for extra realism in the change signal needs to 

be critically assessed in the actual outputs for any region.

6.3.5 AREAS OF GREATEST POTENTIAL ADDED VALUE

In Australia, there are a few compelling cases where 

downscaling may produce more physically plausible change 

compared to the GCM hosts. Hence there is an argument 

for using downscaled data in preference to GCM outputs for 

impact analysis at the regional scale in these cases. These 

are the regions with the greatest in  ̂uence of topography 

and coastlines, and also the regions where there are 

distinct climatic zones within a relatively small area. These 

areas include Tasmania, south-east mainland Australia, the 

Australian Alps, the Eastern Seaboard between the coast 

and the Great Dividing Range and south-east Queensland, 

as well as some regions within southern South Australia and 

south-west Western Australia. For example, downscaling 

was shown to reveal diS erent projected rainfall changes in 
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western compared to eastern Tasmania in some seasons, 

according to plausible regional climate boundaries based 

on the relationships of rainfall to mean westerly circulation 

(Grose et al. 2013). For climate change projections in the 

tropics, the largest source of uncertainty is often from 

processes such as convection and clouds, therefore a 

diS erent projection in downscaling may be due to a 

diS erent simulation of convection and clouds and can be 

harder to attribute to B ner resolution of surface features. 

Without such a B rm basis to identify the added value, we 

place less emphasis on downscaling in the tropics, but 

emphasise the ‘added value’ from downscaling primarily in 

southern Australia.

6.3.6 AVAILABILITY

This project has produced two sets of downscaled climate 

projections for Australia that are reported on here. These 

outputs are produced using the CCAM model using six 

CMIP5 host GCMs as input (ACCESS-1.0, CCSM4, CNRM-CM5, 

GFDL-CM5, GFDL-CM3, MPI-ESM-LR and NorESM1-M). These 

six models were chosen to cover a representative range 

of projected changes for Australia and the wider region, 

chosen from the better performing set of CMIP5 models. 

CCAM data will be available through the Climate Change 

in Australia website. We also report on outputs from the 

Bureau of Meteorology Analogue-based SDM of Timbal et 

al. (2009) with 22 CMIP5 GCMs as input (see Table 3.3.1 for 

models used). Outputs are produced for RCP4.5 and the 

RCP8.5. Along with this new downscaling work, reference 

is made to regional studies that produced downscaled 

projections for particular sub-regions of Australia, 

including:

• Climate Futures for Tasmania (http://www.acecrc.org.

au/Research/Climate%20Futures) and further work on 

the Australian Alps to be released in 2015

• South Eastern Australian Climate Initiative (SEACI; http://

www.seaci.org/)

• Queensland Climate Change Centre of Excellence 

project for South-east Queensland 

• Indian Ocean Climate Initiative (IOCI, http://www.ioci.

org.au/)

• Goyder Institute South Australia (http://goyderinstitute.

org/) 

• Consistent climate scenarios project (Burgess et 

al. 2012) (http://www.longpaddock.qld.gov.au/

climateprojections/about.html)

• NSW and ACT Regional Climate Modelling (NARCLIM, 

http://www.ccrc.unsw.edu.au/NARCliM/) 

Please note that while these sites provide information 

about the relevant data, it may not necessarily provide 

access to datasets.

6.4 ASSESSING CONFIDENCE IN 

PROJECTIONS

Assessing climate projections is quite diS erent to assessing 

weather forecasts. Weather forecasts are initialised with 

current observations and provide predictions of the 

next 1-10 days that can be continually assessed against 

observations. Climate is the average weather. Climate 

projections are simulations that are largely independent 

of the initial conditions, designed to show the long-

term response of the climate system to hypothetical, but 

plausible, scenarios of external forcings into the future. 

Climate projections are not expected to give accurate 

predictions of individual weather events into the far future.

However, it is expected that the projections will show a 

plausible change to multi-decadal climate statistics if a 

particular RCP is followed and natural climate variability 

is taken into account. ConB dence in projections can be 

assessed by comparing simulations of the current climate 

and past climate changes with observations, assessing 

the agreement between climate model simulations, 

and by considering our understanding of the physical 

processes driving projected changes (see Chapter 5). In 

reality, projections for 2030 and beyond can never be 

fully assessed against observations, the concentrations of 

greenhouse gases in the atmosphere will probably not play 

out exactly as speciB ed any one RCP, and there is likely to 

be unpredictable natural forcing factors such as volcanic 

eruptions. These factors aS ect what constitutes conB dence 

in climate projections, and how it is assessed.

ConB dence in a climate projection statement represents 

the authors’ assessment of its reliability. ConB dence comes 

from multiple lines of evidence including physical theory, 

past climate changes and climate model simulations. Here 

conB dence language speciB ed by the IPCC for their Fifth 

Assessment Report is used (see Mastrandrea et al. 2010), 

which considers factors along two dimensions; evidence 

(type, amount, quality and consistency), and agreement 

between those lines of evidence (Figure 6.4.1) to assign 

a conB dence rating using calibrated language based on 

expert judgment of the various lines of evidence. As in 

IPCC (2013), conB dence is expressed using the qualiB ers 

‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’. Though 

in practice, only four qualiB ers were used as ‘very low’ 

conB dence was never assigned to a variable.
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FIGURE 6.4.1: A DEPICTION OF EVIDENCE AND AGREEMENT STATEMENTS AND THEIR RELATIONSHIP TO CONFIDENCE. CONFIDENCE 
INCREASES TOWARDS THE TOP RIGHT CORNER AS SUGGESTED BY THE INCREASING STRENGTH OF SHADING. GENERALLY, EVIDENCE 
IS MOST ROBUST WHEN THERE ARE MULTIPLE, CONSISTENT INDEPENDENT LINES OF HIGH QUALITY EVIDENCE (ADAPTED FROM: 
MASTRANDREA ET AL. 2010).

In setting conB dence for projections in this Report, the 

simulated range of change from CMIP5 models and any 

consistency on the simulated direction of change was 

considered. This is supplemented by the following lines of 

evidence: model reliability at simulating relevant aspects 

of the current climate, results from relevant downscaled 

projections, evidence for a plausible process driving the 

simulated changes, and the level of consistency with 

emerging trends in the observations. For rainfall change, 

all of these lines of evidence were considered in some detail 

(see Section 7.2, Table 7.2.2). Some other variables did not 

always permit or require this full approach, but in all cases 

conB dence is assessed, and reasons and evidence are given. 
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