

FOR AUSTRALIA'S NATURAL RESOURCE MANAGEMENT REGIONS

An Australian Government Initiative

Introduction to the Climate Futures Framework John Clarke, Tim Erwin

Impact Assessment

Climate projectic
 Highest scenario (RCP8.5)
 Observations (AWAP)
 CMIP5 model (ACCESS1-0)

second draft, 15/11/201

2100

50

- The level of detai
 decision-makers, general awarene
 oread
- Not "one size fits -50 1950 2000
 to be purpose-built
- Because of the uncertainty, often use a "risk management" approach to evaluate important "cases", e.g.
 - "Best" Case
 - "Worst" Case
 - "Maximum Consensus" Case (if there is one) 30.

Typical climate projections

- Typically projections are for individual climate variables for selected years and emissions scenarios
- Projections expressed as a central tendency (e.g. mean or median) with a range of uncertainty, *e.g.*
 - 2°C (1-3°C) warmer
 - 10% (5-15%) wetter
- OK for general information and working with single climate variables, but...
- What if your impact assessment needs to consider multiple variables jointly (*e.g.* crop growth, species distributions)?

10[°]

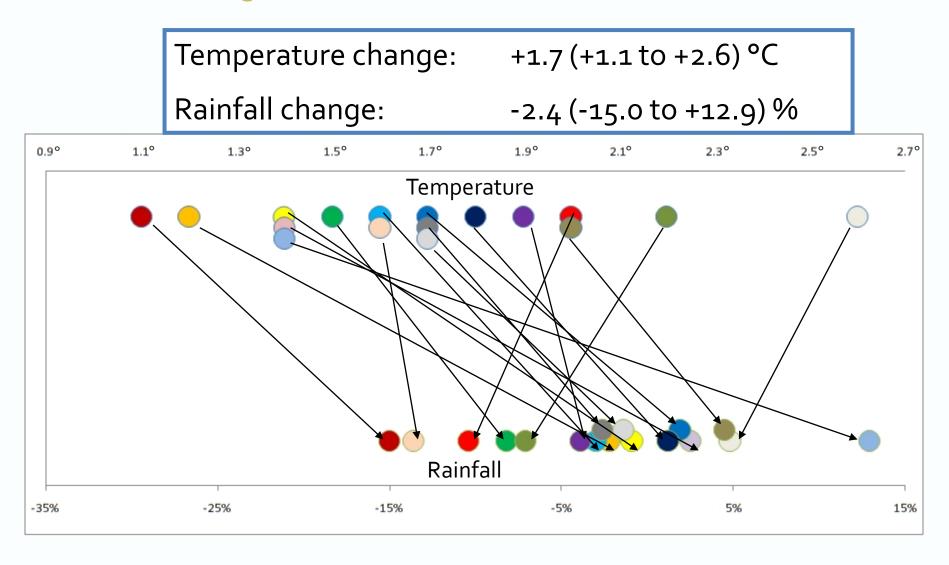
0°

-20°

-10°

20°

30°


40°

50°

Temperature change:	+1.7 (+1.1 to +2.6) °C			
Rainfall change:	-2.4 (-15.0 to +12.9) %			

-20

-10

20°

10[°]

30°

50°

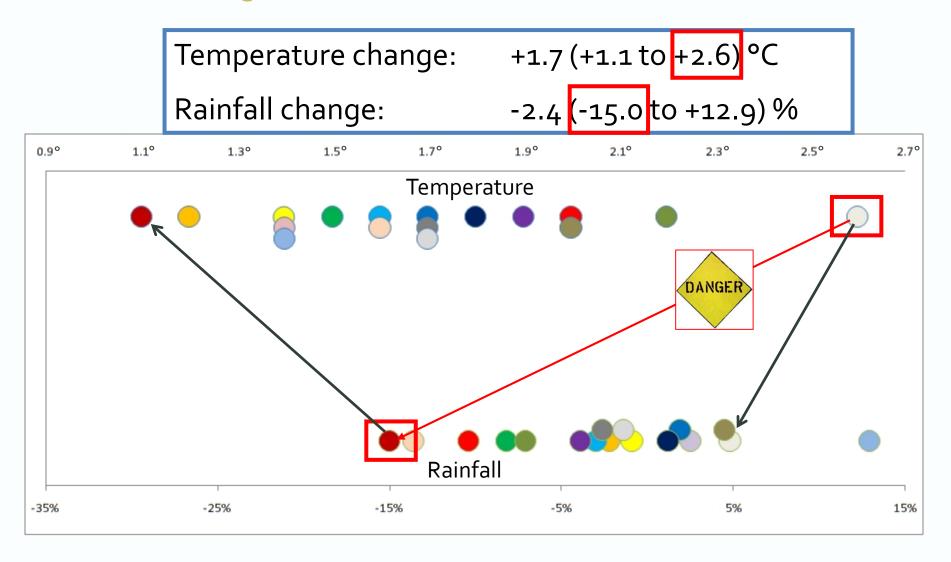
Temperature change:	+1.7 (+1.1 to +2.6) °C			
Rainfall change:	-2.4 (-15.0 to +12.9) %			

But you know none of this if all you have is a mean and range!

20°

30°

50°


40[°]

10°

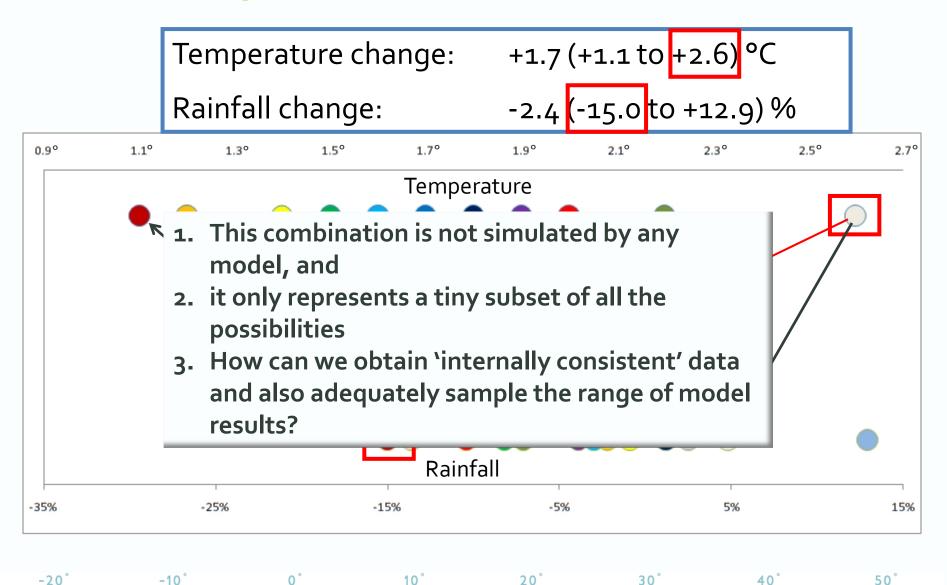
0°

-20°

-10[°]

20°

30°


50°

40

10°

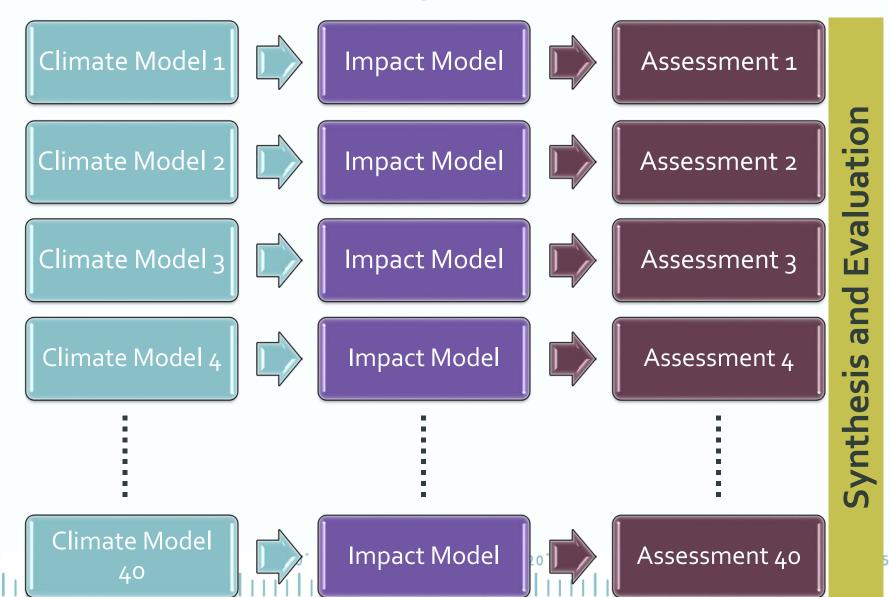
-20°

-10

What do we want from the projections?

- Internally Consistent Data
- Adequately Sample the Range
- Achievable

-20


 Information on Model Agreement (> likelihood)

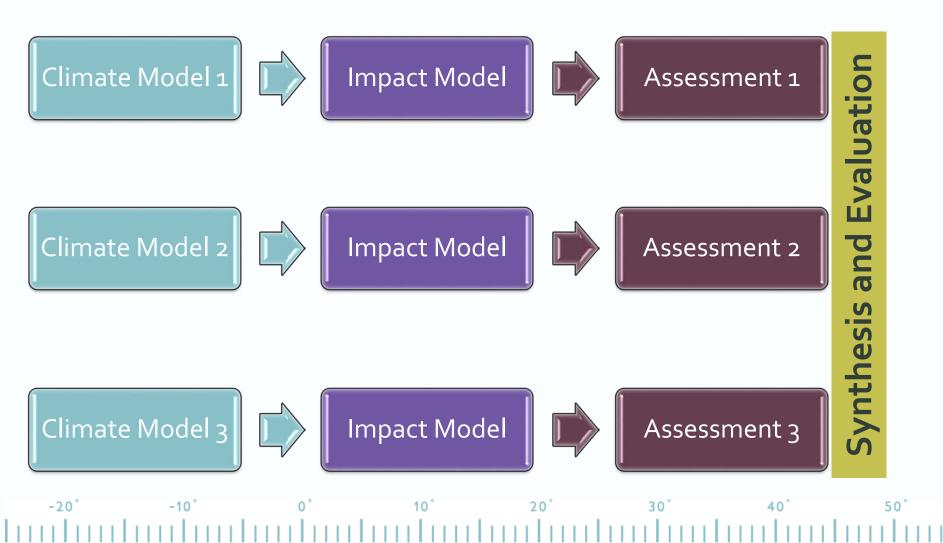
20

50

Credibility (model evaluation)

Using individual models for impact assessment – every model

What we want from projections - using every model


-20

Internally Consistent Data
 Adequately Sample the Range
 Achievable

★ • Information on Model Agreement

20

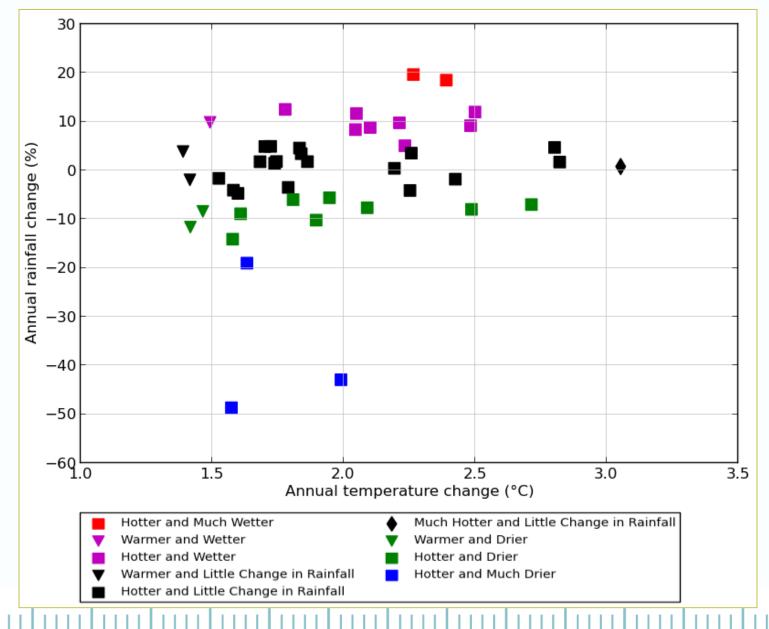
Using individual models for impact assessment – "Best" model approach

What we want from projections - 'best' models

-20

Internally Consistent Data Adequately Sample the Range Achievable

★ • Information on Model Agreement


10

20

30

An alternative approach

-20°

50°

From Scatter-plot to Matrix

10[°]

		ANNUAL SURFACE TEMPERATURE (C)					
		SLIGHTLY WARMER	WARMER	HOTTER	MUCH HOTTER		
		< 0.50	0.50 TO 1.50	1.50 TO 3.00	> 3.00		
ANNUAL RAINFALL (%)	MUCH WETTER > 15.00			+ 2 of 39 GCM s			
	WETTER 5.00 TO 15.00		+ 1 of 39 GCMs	+ 1 of 6 RCMs			
	LITTLE CHANGE		+	7 of 39 GCMs	+		
	-5.00 TO 5.00		2 of 39 GCMs	1 of 6 RCMs 17 of 39 GCMs	1 of 39 GCMs		
	DRIER -15.00 TO -5.00		+ 1 of 6 RCMs 1 of 39 GCMs	+ 3 of 6 RCMs 5 of 39 GCMs			
	MUCH DRIER < -15.00			+ 3 of 39 GCMs			

20°

30°

40°

50°

Consensus	Proportion of models
Not projected	No models
Very Low	< 10%
Low	10% - 33%
Moderate	33% - 66%
High	66% - 90%
Very High	> 90%

-10[°]

0°

-20°

'Climate Futures' approach

- Work with the decision-makers, identify:
- Current sensitivity (what climate variables impact on the suitability of infrastructure):
- Key Cases

-20

- Best: future with highest rainfall and least evaporation
- Worst: future with lowest rainfall and highest evaporation

20

- Maximum Consensus (if possible) or Mid-range
- Use Representative Model Wizard to identify models to appropriately represent each Key Case
- Draw on existing information on model skill

Representative Model Selection Wizard

Models are ranked based on a multivariate ordering technique (Kokic et al., 2002). The variable/season combinations can be assigned an importance (Rank) and ranking method (mean, min, max). The mean method will find the model that is closest to multi-model mean while min and max will find the largest and smallest values for the variable/season combination.

	and smallest values for the variable/season combination.		
	Quick Tips	- 0	
	 To find a representative model that is closest to the multi-model mean for all variable/seasons 	ER 0 3.00	MUCH HOTTER > 3.00
	leave the defaults (Method: mean, Rank: 1)		5.00
ANNUAL	 To find a representative model that has the smallest or largest increase for a variable/season use 	ct coco	
RAINFALL (%)	'min' or 'max' for the rank function.	st case	
		of 39 GCMs	
	Surface Temperature Mean 👻 1 👻		
	Variable Season Rank Method Rank	+	
	Surface Temperature Annual Mean - 1 -		
		1 of CMs	
	Rainfall Mean 🔹 1 🔹		
	Variable Season Rank Method Rank	of 39 GCMs	
	Rainfall Annual Mean 🔹 1 💌		
	Rank	vimum	
	Model Ranking Results	1 of 6 RCMs	1 of GCM
		sensus'	
	Model Score	of 39 GCMs	
	CMIP5 - HadGEM2-CC 2.2 Export		
	CMIP5 - GFDL-CM3 3.5 Export	+	
	CMIP5 - CMCC-CMS 3.6 Export		
		3 of CMs	
	CMIP5 - MPI-ESM-MR 5.1 Export	of 39 GCMs	
	CMIP5 - HadGEM2-ES 11.0 Export		
		+	
	CMIP5 - GISS-E2-H 14.4 Export	orst case	
	CMIP5 - IPSL-CM5B-LR 15.0 Export	of 39 GCMs	
	CMIP5 - IPSL-CM5B-LR 15.0 Export	0.00 0.000	
	CMIP5 - bcc-csm1-1-m 17.4 Export		
	CMIP5 - ACCESS1-3 19.8 Export		
	CMIP5 - CSIRO-Mk3-6-0 21.6 Export		
0°	CMIP5 - GFDL-ESM2M 22.7 Export	40°	50°
Luuri			

÷

Consensus	Proportion of models
Not projected	No models
Very Low	< 10%
Low	10% - 33%
Moderate	33% - 66%
High	66% - 90%
Very High	> 90%

-10°

-20°

From Scatter-plot to Matrix

				ANNUAL SURFACE TEMPERATURE (C) SLIGHTLY WARMER WARMER HOTTER MUCH HOTTER					
						RMER	WARMER	HOTTER	MUCH HOTTER
				< 0.5	0		0.50 TO 1.50	1.50 TO 3.00	> 3.00
		ANNUAL RAINFALL (%)	MUCH WETTER > 15.00					+ 2 of 39 GCM s	
			WETTER 5.00 TO 15.00				I of 39 GCMs	+ 1 of 6 RCMs 7 of 39 GCMs	
			LITTLE CHANGE -5.00 TO 5.00		Ms				
			DRIER				3 (of 39 GCMs	-
Consensus	Proportion of models		-15.00 TO -5.00					SURFACE TEMPERATURE	RAINFALL
Not projected	No models					MODEL		ANNUAL	ANNUAL
Very Low	< 10%								
Low	10% - 33%		MUCH DRIER				P5 - MIROC - M-CHEM†	1.99°C	-42.9%
Moderate High	33% - 66% 66% - 90%		< -15.00			CMIP5	MIROC-ESM†	1.57°C	-48.7%
Very High	> 90%					CMIP5	GFDL-ESM2G	1.63°C	-19.0%
							Mean	1.7	-36.9
						Stand	ard Deviation	0.2	12.8
-20°	-10°	0°	10 [°]						
							Use this	cell for model selection	

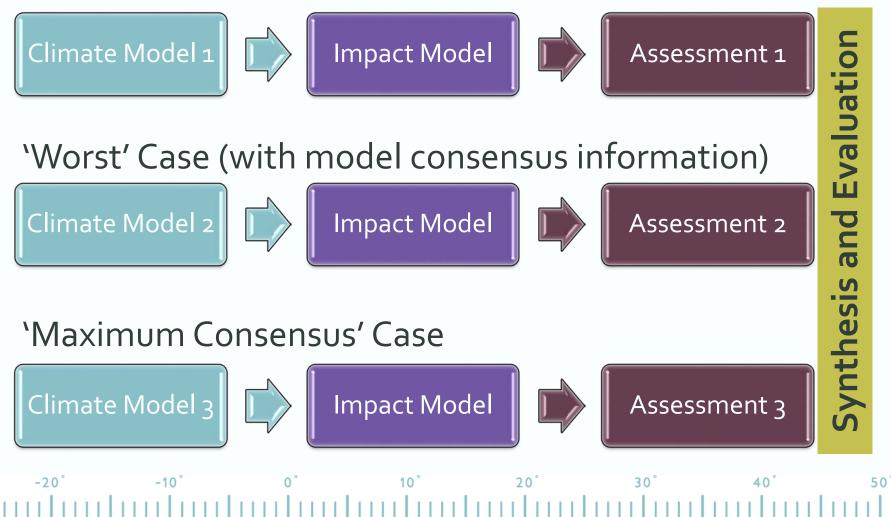
Using the results in an impact assessment

Case	Climate Future	Consensus	Representative Model
`Best′	Hotter, Wetter	Very Low	NorESM1-ME
'Worst'	Much Hotter, Much Drier	Low	IPSL-CM5A-LR
'Maximum Consensus'	Hotter, Much Drier	Moderate	HadGEM2-ES

- Obtain required data from each model
 - From CCiA website (incl. GCM, downscaled, maps, GIS, time-series)
 - NARCliM, Climate Futures Tasmania, Goyder Institute
 - Other sources (*e.g.* Tyndall Centre, CliMond)
 - Contact us

-10

- Run assessment for each model to evaluate each case
- Use model consensus information to assist weighing up likelihoods of each case


10

20

30

Using individual models for impact assessment – key cases: Climate Futures

'Best' Case (with model consensus information)

What we want from projections

- key cases from Climate Futures

Internally Consistent Data
 Adequately Sample the Range
 Achievable
 Information on Model Agreement
 Whether using a subset or all models

20

■ Further Information

The conceptual and scientific basis of the Climate Futures Framework

Whetton P, Hennessy K, Clarke J, McInnes K, Kent D (2012) <u>'Use of Representative Climate Futures in impact and adaptation assessment.</u>' *Climatic Change 115, 433-442. 10.1007/s10584-012-0471-z.*

Application of the Climate Futures Framework

-10

-20

Clarke JM, Whetton PH, Hennessy KJ (2011) 'Providing Application-specific Climate Projections Datasets: CSIRO's Climate Futures Framework.' Peer-reviewed conference paper. In F Chan, D Marinova and RS Anderssen (eds.) MODSIM2011, 19th International Congress on Modelling and Simulation. Perth, Western Australia. December 2011 pp. 2683-2690. ISBN: 2978-2680-9872143-9872141-9872147. (Modelling and Simulation Society of Australia and New Zealand). http://www.mssanz.org.au/modsim2011/F5/clarke.pdf.

Climate Change in Australia Online Training: Module 4 The Climate Futures Framework

https://www.climatechangeinaustralia.gov.au/en/climate-campus/online-training/climate-futures-framework/

Climate Change Animations (including one on Australian Climate Futures)

https://www.climatechangeinaustralia.gov.au/en/support-and-guidance/tools-communicators/communication-resources/animations/

10[°]

20

30

40

CONTACT US CCIA Team CSIRO Climate Science Centre e: climatefutures@csiro.au w: www.csiro.au