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Model evaluation is an important tool to help rate confidence in climate model simulations. 

This can add to the overall confidence assessment for future projections of the Australian 

climate. Additionally it can highlight significant model deficiencies that may affect the 

selection of a subset of models for use in impact assessment.  

Here we present results from an extensive model evaluation undertaken as part of the Natural 

Resource Management (NRM) Project in order to inform the newest set of climate change 

projections for Australia. 

The assessment covers mean climate skill over Australia as well as variability measures and 

teleconnections from up to 47 CMIP5 models and 23 CMIP3 models (for comparison where 

appropriate). Additionally, the skill in representing important climate features such as MJO, 

SAM, blocking and cut-off lows are also reviewed. Selected extremes are evaluated as well as 

simulations of two different types of downscaling simulations used within the NRM project. 

Finally, an attempt is made to synthesise this information in order to highlight a small group of 

CMIP5 models which show consistent deficiencies in representing the Australian climate and 

its features. 

Introduction 

Climate models are our primary tools for investigating the response of the Earth’s climate system to forcings such as greenhouse gases, and for 

making projections of the future climate. It is crucial to evaluate the individual models and ensembles of models used in climate studies (Flato et 

al. 2013). The evaluation of models in simulating the current climate and recent climate trends is a ground to accept or reject models for use in a 

particular application, and is an important component in assessing the confidence in future projections from the ensemble used.  

In this paper climate models are evaluated by using measures of agreement between model simulations and observations of the present climate  

of the Australian region. The results of this model evaluation contribute to the assessment of confidence in model-simulated future climate 

changes (CSIRO and Bureau of Meteorology 2015) and also to the assessment of the adequacy of any model, or models in general, for particular 

applications. Recent IPCC Assessment Reports also use model evaluation to guide confidence in projections of future climate (IPCC 2007, 

2013). 

The ability of individual models in the Coupled Model Intercomparison Project phase 5 (CMIP5) archive (Taylor et al. 2012) to simulate the 

Australian climate can vary depending on which aspect of a model simulation is considered. There is a wide range of climate features that have 

been included in this evaluation, in order to capture the complexity of the climate system. These features include the mean and seasonal cycle of 

variables such as surface temperature, rainfall and wind, but also the tele-connection of Australian rainfall to the main drivers of variability such 

as the El Niño Southern Oscillation (see also Section 4.1.2 in CSIRO and Bureau of Meteorology 2015). It is not possible to produce an 
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exhaustive evaluation of every aspect of the climate system relevant to regional climate change, however the assessment of the mean state of 

surface variables and a few important aspects driving climate variability is useful evidence for informing confidence in projections. Obtaining a 

wide range of assessment metrics, some of which are not independent, makes it difficult to identify a group of best performing models, however 

it is possible to identify a small subset of models that perform consistently poorly across many aspects of the climate, or that perform poorly on 

critical aspects of the climate. Such information on poorly performing individual models is relevant when users of climate change projection 

information are choosing a subset of models for application in impact assessment, such as through the Climate Futures approach – see Whetton 

et al. (2012). Similarly, the results from the model evaluation are one very important consideration when choosing host models for further 

downscaling approaches (Evans et al 2013). 

Global climate models are designed to simulate large-scale processes. On a smaller regional scale, the spatial and temporal details of these 

processes are simulated with much more varying capacity. On even smaller scales, processes might not be directly simulated by global climate 

models at all (i.e. tropical cyclones). Climate model resolution will give a rough indication of the spatial extent as to wha t features and processes 

these models may simulate realistically.  

CMIP5 is overall an improved set of global climate models compared to the previous CMIP3 (Meehl et al. 2007) in terms of model formulation. 

The improvements arise from the increase in horizontal and vertical resolution; an improved representation of processes within the climate 

system (i.e. aerosol-cloud interactions, and the carbon cycle in the subset that are Earth-System-Models, ESMs) and also the availability of a 

larger number of ensemble members improves statistics overall (Chapter 9 in IPCC, 2013). On a continental and global scale, this has also lead 

to an improved ability to simulate historical climate. Some examples of this ability are reported by IPCC (2013) and include the representation 

of: 

 Global mean surface temperature, including trends over the recent decades 

 Long-term global mean large-scale rainfall patterns (but less well than temperature) 

 Regional mean surface temperature (sub-continental scales) 

 Annual cycle of Arctic sea ice extent (and recent trends) 

 Trends in ocean heat content 

 ENSO simulation 

 Extreme events, especially temperature related ones 

 Recent ozone trends 

Beside these improvements, certain areas have not improved since the previous IPCC Assessment in 2007. This includes importan t systematic 

errors and biases such as the "cold tongue" bias (e.g. the sea surface temperature difference between East and West equatorial Pacific is too large 

in models, leading to a cold bias in the Western Pacific), problems in simulating the diurnal cycle of rainfall, the Madden -Julian Oscillation, and 

more. In many cases, there is a large inter-model spread leading to enhanced uncertainty, however amongst the models that do not include 

carbon cycle these are reduced compared to CMIP3  (IPCC, 2013).  

Apart from spatial resolution, models also employ different physical schemes representing atmospheric and oceanic processes (such as clouds 

and convection schemes). One of the main aims of model evaluation is to assess the skill of these models through standardised  inter-

comparisons. The CMIP5 experiments allow for such a comparison. This paper will focus on the assessment of climate models for the 

Australian region. 

Data and Methods 

At the core of every model evaluation is a set of high quality observations to which model simulations can be compared. The high quality data 

set from the Australian Water Availability Project (AWAP, Jones et al. 2009; Raupach et al. 2009, 2012) is used for the evaluation of the spatial 

distribution of rainfall and temperature over the Australian continent. These provide an excellent indicator of mean climate across Australia. For 

the assessment of trends in temperature a recently updated high-quality reference station data set is used (ACORN-SAT – Trewin 2013). For 

several climate fields (including rainfall and temperature) there are multiple global data sets available, which allows for an extension of the 

evaluation over a wider region including ocean regions surrounding Australia, and an estimate of the uncertainty in observations when multiple 

data sets are used for the same climate field. The various observational and reanalysis datasets used in this paper are described in Table 1 and the 

global climate models (from CMIP3 and CMIP5) are described in Table 2, including the model labels used throughout this paper. For the 

analysis of ENSO observational data were derived from the Hadley Centre Sea Ice and SST dataset (HadISST; Rayner et al. 2003) .  

Most analysis in this paper is carried out using the Run 1 simulation from the historical experiments of the models taking part in the Coupled 

Model Inter-comparison Phase 5 (CMIP5) experiment coordinated by the World Climate Research program (WCRP) and described in Taylor et 

al. (2012). For the historical experiments, a comprehensive set of historical anthropogenic emissions and land-use and land-cover change data 

have been assembled in order to produce a relatively homogeneous ensemble of historical simulations with common time-series of forcing 
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agents (e.g. a prescribed set of concentrations). For most evaluation tasks, we compare climate over the time slice 1986-2005 as a representative 

recent climate period consistent with the ‘baseline’ period used in CSIRO and Bureau of Meteorology (2015) and IPCC (2013). When 

evaluating climate variability (and if the observational data set is available for longer periods) the period 1950-2005 is used. It will be stated 

clearly which period was used. 

Table 1 List of global gridded observational (white) and reanalysis data sets (grey), their climate fields used, time coverage, origin and 

reference. The reference data sets for surface air temperature and rainfall over Australia are AWAP and ACORN-SAT. The 

abbreviation pr refers to precipitation; tas: surface air temperature; mslp: mean sea level pressure; sst: sea surface temperature. 

Gridded data set 

Name Fields Period Origin References 

AWAP pr 1900-2012 
Australian Water Availability Project, Bureau of 

Meteorology and CSIRO 

Jones et al. 2009a; Raupach et al., 

2009 and 2012 

ACORN-SAT tas 1910-2012 
Australian Climate Observations Reference Network – 

Surface Air Temperature, Bureau of Meteorology 
Trewin 2013 

CMAP pr 1979-2008 
Climate Prediction Centre Merged Analysis of 

Precipitation 
Xie & Arkin, 1997 

GPCC pr 1901-2010 Global Precipitation Climatology Centre (GPCC) Rudolf et al., 2005; Beck et al., 2005 

GPCP pr 1979-2008 Global Precipitation Climatology Project 2 
Huffman et al., 2009; Adler et al., 

2003 

CRU tas 1901-2006 Climate Research Unit temperature database Harris et al., 2013 

GISS tas 1850-2006 
NASA Goddard Institute for Space Sciences (GISS) 

Surface Temperature Analysis 
GISTEMP; Hansen et al., 2010 

HADCRU tas, pr 1901-2008 Met Office Hadley Centre and Climate Research Unit HadCRUT3; Brohan et al., 2006 

COREv2 pr, tas, mslp 1958-2006 
CLIVAR Working Group on Ocean Model 

Development (WGOMD) Coordinated 
Large & Yeager, 2009 & 2004 

HOAPS pr, fluxes 1987-2005 
Hamburg Ocean Atmosphere parameters and fluxes 

satellite 

Fennig et al., 2012; Andersson et al., 

2010 

HadISST sst 1870-2010 
Hadley Centre Sea Ice and Sea Surface Temperature 

dataset 
HadISST2; Rayner et al., 2003 

HadSLP2 mslp 1850-2004 Hadley Centre Sea Level Pressure dataset Allan and Ansell 2006 

CFSR pr, winds, mslp, tas 1979-2009 NCEP Climate Forecast System Reanalysis Saha et al., 2010 

Merra pr, winds, mslp, tas 1979-2011 
Modern Era Retrospective-analysis for Research and 

Applications 
Rienecker et al., 2011 

ERA40 pr, winds, mslp, tas 1958-2002 European 40-year reanalysis Uppala et al., 2005 

ERA_INT pr, winds, mslp, tas 1979-2011 ERA-interim Dee et al., 2011 

NCEP pr, winds, mslp, tas 1948-2011 NCEP/NCAR reanalysis 1 Kalnay et al., 1996 

NCEP2 pr, winds, mslp, tas 1979-2011 NCEP/DOE reanalysis 2 Kanamitsu et al., 2002 

JRA25anl pr, winds, mslp, tas 1979-2010 Japanese 25-year reanalysis Onogi et al., 2007 

 

All atmospheric (oceanic) data were assessed by interpolating to the grid spacing of the observed data set. When calculating the multi-model 

mean (MMM), data were interpolated to a common 1.5° latitude / longitude grid prior to analysis. Region-specific information on model 

evaluation will be focussed on climatic regions that have been identified by Natural Resource Management (NRM) authorities within Australia 

as important regional clusters. Figure 1 shows a map of the Australian topography as well as these eight clusters including the naming 

convention for each of the NRM cluster regions. Along with the eight clusters, regional information is presented for four ‘super-clusters’: 

Southern Australia (SA) made up of the Southern Slopes, Murray Basin and South and South-western Flatlands clusters; Eastern Australia (EA), 

made up of the Central Slopes and East Australia clusters; Northern Australia (NA), made up of the Monsoonal North and Tropical North 

clusters; and the Rangelands (R), containing only the Rangelands cluster. Some results are also presented for ‘sub-clusters’ that are divisions of 

clusters: ECN East Coast North and ECS East Coast South dividing the EC cluster along the Queensland-NSW border; MNE Monsoonal North 

East and MNW Monsoonal North West dividing MN along the Queensland–Northern Territory border; RN Rangelands North and RS 

Rangelands South dividing Rangelands roughly through the middle; four sub-clusters for Southern Slopes dividing it into quarters (SSTE 

Southern Slopes Tasmania East, SSTW Southern Slopes Tasmania West, SSVW Southern Slopes Victoria West and SSVE Southern Slopes 

Victoria East); and SSWFE South and South Western Flatlands East and SSWFW South and South Western Flatlands West, dividing up SSWF 

into the Western Australia and South Australia portions. See CCiA (2015) for more information about regionalisation.  



Australian Meteorological and Oceanographic Journal 65:1 October 2015 19–53 22 

 

Table 2 List of CMIP5 and CMIP3 ocean-atmosphere general circulation models including the grid resolution for the ocean and atmosphere 

components (in degrees) and the size of a single atmosphere grid cell (in km). 

CMIP5 

Model ID 
Institute and Country of Origin 

Ocean 

horizontal 

resolution  (°lat 

x °lon) 

Atmosphere 

horizontal 

resolution (°lat 

x °lon) 

Atmosphere Eq. resolution 

Latitude  Longitude 

(Km) (Km) 

ACCESS-1.0 CSIRO-BOM, Australia 1.0×1.0 1.9×1.2 210 130 

ACCESS-1.3 CSIRO-BOM, Australia 1.0×1.0 1.9×1.2 210 130 

BCC-CSM1-1 BCC, CMA, China 1.0×1.0 2.8×2.8 310 310 

BCC-CSM1-1-M BCC, CMA, China 1.0×1.0 1.1×1.1 120 120 

BNU-ESM BNU, China 0.9×1.0 2.8×2.8 310 310 

CanCM4 CCCMA, Canada 1.4×0.9 2.8×2.8 310 310 

CanESM2 CCCMA, Canada 1.4×0.9 2.8×2.8 310 310 

CCSM4 NCAR, USA 1.1×0.6 1.2×0.9 130 100 

CESM1-BGC NSF-DOE-NCAR, USA 1.1×0.6 1.2×0.9 130 100 

CESM1-CAM5 NSF-DOE-NCAR, USA 1.1×0.6 1.2×0.9 130 100 

CESM1-FASTCHEM NSF-DOE-NCAR, USA 1.1×0.6 1.2×0.9 130 100 

CESM1-WACCM NSF-DOE-NCAR, USA 1.1×0.6 2.5×1.9 275 210 

CMCC-CESM CMCC, Italy 2.0×1.9 3.7×3.7 410 410 

CMCC-CM CMCC, Italy 2.0×1.9 0.7×0.7 78 78 

CMCC-CMS CMCC, Italy 2.0×2.0 1.9×1.9 210 210 

CNRM-CM5 CNRM-CERFACS, France 1.0×0.8 1.4×1.4 155 155 

CNRM-CM5-2 CNRM-CERFACS, France 1.0×0.8 1.4×1.4 155 155 

CSIRO-Mk3-6-0 CSIRO-QCCCE, Australia 1.9×0.9 1.9×1.9 210 210 

EC-EARTH EC-EARTH, Europe 1.0×0.8 1.1×1.1 120 120 

FIO-ESM FIO, SOA, China 1.1×0.6 2.8×2.8 310 310 

GFDL-CM2p1 NOAA, GFDL, USA 1.0×1.0 2.5×2.0 275 220 

GFDL-CM3 NOAA, GFDL, USA 1.0×1.0 2.5×2.0 275 220 

GFDL-ESM2G NOAA, GFDL, USA 1.0×1.0 2.5×2.0 275 220 

GFDL-ESM2M NOAA, GFDL, USA 1.0×1.0 2.5×2.0 275 220 

GISS-E2-H NASA/GISS, NY, USA 2.5×2.0 2.5×2.0 275 220 

GISS-E2-H-CC NASA/GISS, NY, USA 1.0×1.0 1.0×1.0 110 110 

GISS-E2-R NASA/GISS, NY, USA 2.5×2.0 2.5×2.0 275 220 

GISS-E2-R-CC NASA/GISS, NY, USA 1.0×1.0 1.0×1.0 110 110 

HadCM3 MOHC, UK 1.2×1.2 3.7×2.5 410 280 

HadGEM2-AO NIMR-KMA, Korea 1.0×1.0 1.9×1.2 210 130 

HadGEM2-CC MOHC, UK 1.0×1.0 1.9×1.2 210 130 

HadGEM2-ES MOHC, UK 1.0×1.0 1.9×1.2 210 130 

INMCM4 INM, Russia 0.8×0.4 2.0×1.5 220 165 

IPSL-CM5A-LR IPSL, France 2.0×1.9 3.7×1.9 410 210 

IPSL-CM5A-MR IPSL, France 1.6×1.4 2.5×1.3 275 145 

IPSL-CM5B-LR IPSL, France 2.0×1.9 3.7×1.9 410 210 

MIROC4h JAMSTEC, Japan 0.3×0.2 0.56×0.56 60 60 

MIROC5 JAMSTEC, Japan 1.6×1.4 1.4×1.4 155 155 

MIROC-ESM JAMSTEC, Japan 1.4×0.9 2.8×2.8 310 310 

MIROC-ESM-CHEM JAMSTEC, Japan 1.4×0.9 2.8×2.8 310 310 

MPI-ESM-LR MPI-N, Germany 1.5×1.5 1.9×1.9 210 210 

MPI-ESM-MR MPI-N, Germany 0.4×0.4 1.9×1.9 210 210 



Australian Meteorological and Oceanographic Journal 65:1 October 2015 19–53 23 

 

CMIP5 

Model ID 
Institute and Country of Origin 

Ocean 

horizontal 

resolution  (°lat 

x °lon) 

Atmosphere 

horizontal 

resolution (°lat 

x °lon) 

Atmosphere Eq. resolution 

Latitude  Longitude 

(Km) (Km) 

MPI-ESM-P MPI-N, Germany 1.5×1.5 1.9×1.9 210 210 

MRI-CGCM3 MRI, Japan 1.0×0.5 1.1×1.1 120 120 

MRI-ESM1 MRI, Japan 1.0×0.5 1.1×1.1 120 120 

NorESM1-M NCC, Norway 1.1×0.6 2.5×1.9 275 210 

NorESM1-ME NCC, Norway 1.1×0.6 2.5×1.9 275 210 

AVERAGE    228 190 

Highest resolution    60 60 

Lowest resolution    410 410 

 

CMIP5 

Model ID 
Institute and Country of Origin 

Ocean 

horizontal 

resolution 

(°lat x °lon) 

Atmosphere 

horizontal 

resolution 

(°lat x °lon) 

Atmosphere Eq. resolution 

Latitude  Longitude 

(Km) (Km) 

bccr-bcm2-0 BCCR, Norway 1.0×1.0 2.8×2.8 310 310 

cccma-cgcm3-1 CCCMA, Canada 1.9×1.9 3.7×3.7 410 410 

cccma-cgcm3-1-t63 CCCMA, Canada 1.4×0.9 2.8×2.8 310 310 

cnrm-cm3 CNRM, France 2.0×1.0 2.8×2.8 310 310 

csiro-mk3-0 CSIRO, Australia 1.9×0.9 1.9×1.9 210 210 

csiro-mk3-5 CSIRO, Australia 1.9×0.9 1.9×1.9 210 210 

gfdl-cm2-0 NOAA, GFDL, USA 1.0×1.0 2.5×2.0 275 220 

gfdl-cm2-1 NOAA, GFDL, USA 1.0×1.0 2.5×2.0 275 220 

giss-aom NASA/GISS, USA 4.0×3.0 4.0×3.0 440 330 

giss-model-e-h NASA/GISS, USA 1.0×1.0 5.0×4.0 550 440 

giss-model-e-r NASA/GISS, USA 5.0×4.0 5.0×4.0 550 440 

iap-fgoals1-0-g IAP, China 1.0×1.0 2.8×2.8 310 310 

ingv-echam4 INGV, Italy 1.0×1.0 1.1×1.1 120 120 

inmcm3-0 INM, Russia 2.5×2.0 5.0×4.0 550 440 

ipsl-cm4 IPSL, France 2.0×1.0 3.7×2.5 410 280 

miroc3-2-hires CCSR, Japan 1.2×0.6 1.1×1.1 120 120 

miroc3-2-medres CCSR, Japan 1.4×0.9 2.8×2.8 310 310 

miub-echo-g MIUB, Germany/Korea 2.8×2.3 3.7×3.7 410 410 

mpi-echam5 MPI-M, Germany 1.0×1.0 1.9×1.9 210 210 

mri-cgcm2-3-2a MRI, Japan 2.5×2.0 2.8×2.8 310 310 

ncar-ccsm3-0 NCAR, CO, USA 1.1×0.5 1.4×1.4 155 155 

ncar-pcm1 NCAR, CO, USA 1.0×1.0 2.8×2.8 310 310 

ukmo-hadcm3 MOHC, UK 1.2×1.2 3.8×2.5 420 280 

AVERAGE    325 290 

Highest resolution    120 120 

Lowest resolution    550 440 
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Figure 1 Map of Australia showing the (a) state boundaries and topography; and (b) main eight NRM cluster regions Central Slopes (CS),  

East Coast (EC), Monsoonal North (MN), Murray Basin (MB), Rangelands (R), Southern Slopes (SS), Sothern and South-Western 

Flatlands (SSWF) and Wet Tropics (WT). (source of Figure 1b: CCiA 2015) 

 

This paper is structured as follows: the performance of global climate models with respect to climatological characteristics, features and 

processes is evaluated in the following sections. Then the skill of the models in reproducing important climate features is described. Following 

that, there is an overview of how the recent observed trends in rainfall and temperature are captured by the models. The simulation of climatic 

extremes is evaluated in next and downscaling simulations are discussed as well. Finally, a discussion and conclusion is provided. 

Results of an evaluation based on climatological characteristics 

Here we compare the climatology of surface temperature, rainfall and wind in the CMIP3 and CMIP5 models to observations. For reference, 

Table 2 shows spatial resolution of both the atmospheric and ocean components of the CMIP5 models.  

Assessment of historical mean climatologies: temperature, rainfall and mean sea level pressure 

Figures 2 and 3 show a comparison of annual and seasonal climatologies (long-term averages) of temperature and rainfall for Australia for the 

period (1986-2005). The left column in both figures shows the reference observational data set (AWAP, Jones et al. 2009; Raupach et al. 2009, 

2012) while the middle column shows an average of a selection of other observational data sets and reanalyses (7 for temperature and 8 for 

rainfall; see Table 1 for an overview of these) and the right column displays the CMIP5 ensemble mean. 

On average, the CMIP5 models capture the climatological temperature distribution across the continent very well. The north-south gradient in 

temperature is correctly simulated as well as the coastal versus inland differences during summer (middle row in Figure 2) with cooler areas 

reaching a bit too far inland over northern parts of Western Australia. During winter (Jun-Aug) the model ensemble mean model seems slightly 

too warm over northern Australia as well as coastal regions in the south east and Tasmania. Pattern correlations are generally very high for the 

mean model. 

There is a substantial spread in the Australia-averaged temperature amongst the CMIP5 models as indicated by the spread in the box-whiskers in 

Figure 2. While 50 per cent of the models are within ±1 °C of the AWAP reference data, some of the models are several degrees  warmer or 

colder. The box-whiskers belonging to the middle column in Figure 2 additionally indicate that there is some discrepancy amongst the other 

observational data sets and reanalysis data sets with respect to temperature across Australia. But this discrepancy is generally less than half of 

the spread seen in the CMIP5 models. 

Some of the model differences in temperature are driven by their differences in the simulation of the hydrological cycle and Figure 3 shows their 

skill in simulating rainfall across Australia. There is a general tendency to have too much rainfall across north-western Australia and reaching 

too far into the interior of the continent (summer and annual case). North-eastern regions show somewhat less summer rainfall in the models 

compared to AWAP.  
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Figure 2 Climatological mean surface air temperature from AWAP (left column, the reference data set), the average of a selection of other 

observational data sets (middle column, see Table 1) and the CMIP5 mean model (right column, see Table 2) for annual (top row), 

summer (Dec-Feb, middle row) and winter (Jun-Aug, bottom row) surface air temperature. The averaging period is 1986-2005 and 

the units are degrees Celsius (°C). The contours highlight the 9, 15, 21, 27 and 33 °C thresholds for better comparison. The number 

in the top right corner indicates the spatial correlation between the corresponding data and AWAP. The spread in the data set s is 

indicated by the box-whisker to the right of each subplot: each shows the Australia-averaged surface air temperature where the grey 

box refers to the middle 50 % of the data and the whiskers show the spread from minimum to maximum. The thick black line is t he 

median of the underlying data and the red line is AWAP. 

 

The winter rainfall regime (across southern coastal regions of Australia) on the other hand is generally too dry, especially in Tasmania. This 

could be caused by two aspects of insufficient resolution in global climate models: (a) some models’ resolution is too coarse to represent the 

land mass of Tasmania at all; (b) even if global models include Tasmania they do not sufficiently resolve the topographically driven high rainfall 

regimes particularly over western regions of Tasmania. Therefore the pattern correlations are lower for rainfall compared to temperature and the 

model spread for summer rainfall is very large.  

Figures 4 and 5 show the assessment of the CMIP5 model biases in seasonal surface air temperature and rainfall climatologies averaged over the 

clusters, super-clusters and sub-clusters. In general, the CMIP5 models are able to capture seasonal temperatures much better than rainfall which 

is well known and has been reported widely (IPCC 2007 and 2013). 

During summer, the model simulated median seasonal temperatures (Figure 4) are very close to AWAP reference values, particularly for the 

warmer regions across northern and central Australia (MN, R clusters for example). While the temperature range within the model ensemble can 

be as large as 3 °C (with some models showing an even larger cold bias in southern regions and Tasmania), the majority of the models are 

within +/-1 °C of the observed values. 
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Figure 3 Climatological mean rainfall from AWAP (left column, the reference data set), the average of a selection of other observational data 

sets (middle column, see Table 1) and the CMIP5 mean model (right column, see Table 2) for annual (top row), summer (Dec -Feb, 

middle row) and winter (Jun-Aug, bottom row) rainfall. The averaging period is 1986-2005 and the units are mm per day. The 

contours highlight the 1, 3, 6, and 9 mm/day thresholds. The number in the top right corner indicates the spatial correlation between 

the corresponding data and AWAP. The spread in the data sets is indicated by the box-whisker to the right of each subplot: each 

shows the Australia-averaged rainfall where the grey box refers to the middle 50 % of the data and the whiskers show the spread 

from minimum to maximum (for CMIP5 data only). The thick black line is the median of the underlying data and the red line is 

AWAP. 

 

During winter, the majority of climate models have warm biases over some regions of south-eastern Australia (Southern Slopes cluster, see 

Figure 1b for details on clusters.). Most other cluster regions are very well simulated with the median temperatures often within 1 °C of the 

AWAP values. Noteworthy is the large overall spread between the models, which can reach more than 4 °C between the warmest an d coldest 

model for a particular cluster.  

Overall, the biases in temperature point towards a deficiency in some models in capturing the north-south temperature gradient across Australia 

in either the summer or winter season. 

Rainfall biases averaged over clusters, super-clusters and sub-clusters are shown in Figure 5 for summer and winter. The skill of models in 

simulating climatological rainfall varies strongly across Australia: for example during summer, models capture rainfall amoun ts over regions 

with moderate to high seasonal rainfall totals such as the monsoon regions (except the Wet Tropics) and along the East Coast but show more 

variable skill elsewhere. To illustrate the spread in skill in simulating summer rainfall across tropical regions of Australia, Figure 6 shows the 

December to February rainfall climatology (in mm/day) across Northern Australia from 72 models (CMIP5 and CMIP3). Shown are a lso the 

observed climatology and the ensemble mean models for CMIP3 and CMIP5. In order to better compare the results between CMIP3 and CMIP5 

models, the climatology has been calculated using the same period (1980-1999). While there is a fairly large model spread (particularly over the 

monsoon affected regions), the median rainfall is close to the AWAP data in summer. Some models fa il to produce a monsoon-related rainfall 

climatology over northern Australia while others show much too strong rainfall amounts that extend too far south into the con tinent.  
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Figure 4 Cluster averaged mean surface air temperature (units: °C) for summer (Dec-Feb, top) and winter (Jun-Aug, bottom) from all CMIP5 

models (represented by box-whisker bars), AWAP (red circle) and several other observations and re-analysis data sets (coloured 

dots). The box-whiskers display the middle 50 % of the CMIP5 models (box, including the median of the CMIP5 models as thick 

black line) and the range (whiskers) while outlier models are shown as black circles (i.e. they are more than 1.5 times the box width 

from the median away). The time period used for rainfall averages is 1986-2005. Regions are marked on the x-axis: see section 2 

for definitions. 
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Figure 5 Cluster averaged rainfall (units: mm per day) for summer (Dec-Feb, top) and winter (Jun-Aug, bottom) from all CMIP5 models 

(represented by box-whisker bars), AWAP (red circle) and several other observations and re-analysis data sets (coloured dots). The 

box-whiskers display the middle 50 % of the CMIP5 models (box, including the median of the CMIP5 models as thick black line) 

and the range (whiskers) while outlier models are shown as black circles (i.e. they are more than 1.5 times the box width from the 

median away). The time period used for rainfall averages is 1986-2005. Regions are marked on the x-axis: see section 2 for 

definitions. 
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Figure 6 Dec-Feb rainfall climatology (in mm/day) across Northern Australia from 72 models (CMIP5 and CMIP3). Shown are also the 

observed climatology (AWAP; top left) and the ensemble mean models for CMIP3 (second top left) and CMIP5 (third top left). The 

climatological means are taken over the same time period (1980-1999) for both CMIP3 and CMIP5 models. 

 

Along the tropical east coast, models show a substantial dry bias. Further south and inland, there is a general tendency for models to 

overestimate summer rainfall (i.e. Rangelands, Southern Slopes, Murray Darling Basin, Central Slopes) with wet biases of up to 20 mm/month 

(see Figure 5). Further south (Tasmania), the model biases are reversed with strong dry biases of around 20 mm/month for the entire region.  

During winter (e.g. the main rainfall period for southern clusters), the model ensemble shows a dry bias over most of the higher rainfall regions 

(all Southern Slopes and Murray Basin clusters), except for the East Coast cluster where the median model rainfall is a good match to the 

observed AWAP rainfall (Figure 5). The dry bias is particularly large in Tasmania where almost all models underestimate winter rainfall. For 

the large Rangelands cluster, winter rainfall is slightly overestimated. The models capture lower rainfall totals along the tropical regions (Wet 

Tropics and Monsoonal North) well and also the higher winter rainfall with the East Coast cluster. Dry biases are common in small mountainous 

regions (such as the Flinders Ranges in South Australia), which is likely due to model resolution being insufficient to simulate local orographic 

enhancement of rainfall (Figure 5). 

Figure 7 shows the comparison of annual and seasonal climatologies of mean sea level pressure for the wider region around Australia fr om 

observations and the ensemble mean. The middle and bottom rows display the shift between summer and winter pressure climatologies. During 

summer, the monsoonal low over north-west Western Australia dominates with high pressure systems pushed south of the continent. During 

winter, the high pressure system over the continent dominates. On average, the CMIP5 models capture these patterns very well (high spatial 

correlations) but the heat low during summer across the ‘top end’ is too deep and broad. The model spread is severa l hectopascals (hPa) either 

side of the mean sea level pressure. 
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Figure 7 Climatological mean sea level pressure from HadSLP2 (left column, used as the reference data set), the average of a selection of 7 

other observational data sets (middle column, see Table 1) and the CMIP5 mean model (right column, see Table 2) for annual (top 

row), summer (Dec-Feb, middle row) and winter (Jun-Aug, bottom row) mean sea level pressure. The averaging period is 1986-

2005 and the units are hectopascals (hPa). The contours highlight several thresholds for better comparison. The number in the top 

right corner indicates the spatial correlation between the corresponding data and ERA-Interim (with values closer to "1" indicating a 

better correlation). The spread in the data sets is indicated by the box-whisker to the right of each subplot: each shows the Australia-

averaged mean sea level pressure where the grey box refers to the middle 50 % of the data and the whiskers show the spread fr om 

minimum to maximum. The thick black line is the median of the underlying data and the red line is HadSLP2. 

 

Assessment of spatial structure of historical mean climatologies: M-scores for rainfall and temperature 

The correct representation of climatological seasonal rainfall is a very important test for climate models. Questions such as how well the models 

capture the southward extent of the monsoon are a typical example addressing this issue. Similarly important and somewhat related is the 

representation of temperature distribution across Australia. There are several methods that can be used to evaluate spatial characteristics from 

climate models. Here we applied the M-Statistic (Watterson, 1996) which has also been used for the previous Climate Change in Australia 

projections (CSIRO and BoM, 2007). The M statistic or skill score is used as a metric for agreement between simulated and observed 

climatological fields over a particular region.  

Two recent studies have made use of skill scores based on the M statistic for seasonal climatologies of selected climatic variables. Watterson et 

al. (2013a) used a simple test for overall skill in basic surface climate (calculating M-scores for a combination of temperature, rainfall and mean 

sea level pressure for each model) and Watterson et al. (2013b) applied tests of various features of climate (such as the sub-tropical jet).  

The calculations were done for the super-cluster regions  as well as the entire continent and the overall average of the M-scores (for three 

variables and four seasons) for each region and each model are given in Table 3. The score is out of a maximum of 1000. All CMIP5 models 

show an M-Score of over 500/1000 for the Australian domain=, but the scores tend to be lower in smaller regions that have less spatial variation. 

The top scoring model for the full Australian region (AUS) is ACCESS1.0, but others do best for other regions.  

Given the continuing use and validity of CMIP3 results, there is interest in how the two ensembles compare. Here we compare the results for 24 

CMIP3 models given in Watterson et al. (2013a). We can see that the top results are a little lower in CMIP3 than in CMIP5, with differences 

from 14 to 111 points (Table 3). The means show a consistent, and larger, improvement for CMIP5 compared to CMIP3, by 57 points for AUS. 

In fact, several CMIP3 models have poor scores, lowering the CMIP3 mean considerably.  
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The best performing CMIP5 models on these scores are: ACCESS1-0, bcc-csm1-1-m, EC-EARTH, HadGEM2-ES, MPI-ESM-LR and MPI-

ESM-MR. The worst performing models are BNU-ESM, CESM1-WACCM, CMCC-CESM, GISS-E2-H, GISS-E2-H-CC, MIROC-ESM and 

MIROC-ESM-CHEM. 

Table 3: Overall skill scores for 40 CMIP5 models over five Australian domains. The values are the average M score, times 1000, for 

temperature, rainfall and mean sea level pressure, and the four seasons. The top values are highlighted in red and lowest three 

values in blue. Also shown are the overall averages and top model score for the CMIP5 ensemble as well as for CMIP3 for 

comparison. 

Model AUS SA EA NA R 

ACCESS1-0 727 575 514 540 677 

ACCESS1-3 691 492 463 532 583 

bcc-csm1-1 684 464 447 513 604 

bcc-csm1-1-m 711 573 490 525 611 

BNU-ESM 564 388 260 400 462 

CanESM2 706 542 447 544 616 

CCSM4 642 519 429 492 533 

CESM1-BGC 653 518 471 488 543 

CESM1-CAM5 659 589 640 475 511 

CESM1-WACCM 555 360 429 410 442 

CMCC-CESM 549 355 240 283 479 

CMCC-CM 663 583 416 532 554 

CMCC-CMS 672 471 408 553 568 

CNRM-CM5 706 587 450 537 584 

CSIRO-Mk3-6-0 613 431 362 467 500 

EC-EARTH 711 636 569 499 587 

FGOALS-g2 653 518 398 417 551 

FIO-ESM 641 480 347 451 546 

GFDL-CM3 676 546 571 465 542 

GFDL-ESM2G 638 467 499 389 527 

GFDL-ESM2M 607 383 396 393 515 

GISS-E2-H 586 458 426 358 432 

GISS-E2-H-CC 581 473 405 344 430 

GISS-E2-R 575 516 406 350 445 

GISS-E2-R-CC 614 543 459 394 477 

HadGEM2-AO 711 499 499 541 634 

HadGEM2-CC 698 533 472 538 628 

HadGEM2-ES 720 556 506 554 674 

inmcm4 657 455 423 434 569 

IPSL-CM5A-LR 581 395 299 512 532 

IPSL-CM5A-MR 612 477 360 556 527 

IPSL-CM5B-LR 625 424 307 498 569 

MIROC5 644 488 431 499 521 

MIROC-ESM 549 434 321 379 451 

MIROC-ESM-CHEM 561 450 344 386 456 

MPI-ESM-LR 720 542 520 567 650 

MPI-ESM-MR 705 513 513 587 625 

MRI-CGCM3 659 511 482 434 559 

NorESM1-M 604 480 471 368 505 

NorESM1-ME 594 475 455 362 488 

CMIP5 Average 643 492 434 464 543 

CMIP3 Average 586 442 383 407 473 

CMIP5 Top model 727 636 640 587 677 

CMIP3 Top model 706 587 529 573 625 
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Figure 8 Average annual cycles of surface air temperature for Australia (top left) and selected regions (North Australia - NA, Rangelands - 

R, Southern Slopes – SS, Southern Australia - SA, and East Australia - EA) from CMIP5 models. Each grey line represents a model 

simulation, the black line being the ensemble mean and observations (AWAP) shown as a brown line. The averaging period is 

(1986-2005) 
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Figure 9 Average annual cycles of rainfall for Australia (top left) and selected regions (North Australia - NA, Rangelands - R, Southern 

Slopes – SS, Southern Australia - SA, and East Australia - EA) from CMIP5 models. Each grey line represents a model simulation, 

the black line being the ensemble model mean and observations (AWAP) shown as a brown line. The averaging period is (1986-

2005). 
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Assessment of annual cycles of historical climate: rainfall and temperature 

The annual cycle is one of the main climate features which, particularly for temperature and rainfall, is a crucial element to simulate correctly. 

Figure 8 shows the surface air temperature annual cycles for Australia and the super-cluster regions. In general there is very good agreement, but 

with some model spread around the mean. For most regions (and months) the multi-model average is within half a degree of the AWAP value. 

One exception is the Southern Slopes cluster (Figure 8 bottom left) where models are too warm year round, but most of the differences there are 

related to biases over Tasmania (which is often poorly resolved) and not over the Victorian region within Southern Slopes.  

Figure 9 shows the corresponding rainfall annual cycles for the same regions. As mentioned earlier, because of the small-scale processes 

involved in rainfall simulation, it is more difficult to correctly simulate rainfall, particularly across small regions such as some of the clusters. 

Regions with a pronounced annual rainfall cycle, such as monsoon dominated Northern Australia, show good model skill with the multi -model 

average matching the AWAP cycle – albeit with large inter-model spread. Other regions show more varying model skill and while the average 

might still be close to AWAP there is significant departure by some models. In the example of a fairly "flat" annual rainfall  cycle (Southern 

Slopes, Figure 9 bottom left), some models show even a reversed annual cycle (for example the NorESM1-ME model). 

The spatial-temporal root-mean-square-error (STRMSE) is used as a skill measure for the 1986–2005 annual-average rainfall cycle (following 

Gleckler et al. 2008). It combines spatial deviations from observed patterns for each month, thereby reflecting also the skill of simulating the 

annual cycle. This error measure is portrayed in Figure 10 as a relative error by normalizing the result by the median error of all model results. 

For example, a value of 0.20 indicates that a model’s STRMSE is 20% larger than the median CMIP5 error for that variable, whereas a value of 

-0.20 means the error is 20% smaller than the median error. For Australia, the median STRMSE for the CMIP5 models is close to 1 mm/day. 

The group of models that show significantly lower STRMSE values for rainfall are: MPI-ESM-MR, HadCM3, MPI-ESM-LR, IPSL-CM5B-LR, 

MRI-CGCM3, MIROC4h and CNRM-CM5. Those that have at least 30% higher STRMSE than the median error are: CESM1-BGC, CCSM4, 

NorESM1-ME, NorESM1-M, CESM1-WACCM and CMCC-CMS. 

Figure 10 Space-time root mean square error of CMIP5 models rainfall across Australia. The error is scaled to show the fractional error higher 

or lower than the median model error. Values below zero indicate better than median error and values above zero higher than 

median error. The red dotted lines display thresholds of 10%, 20% and 40% above the median error (1.13 mm/day).  

 

Assessment of additional climate features and associated skill scores 

Here we present a review of previous studies that have examined the simulation of relevant climate features that impact Australia, and present a 

limited amount of targeted new analysis that complements this review. For a more detailed description of the climate features, see for example 

Chapter 4 in CSIRO and Bureau of Meteorology (2015). 

As part of the UK Met Office's CAPTIVATE project (Scaife et al. 2011; stands for Climate Processes, Variability and Teleconnections), an 

evaluation of simulated Australian climate features was used. The tests were initially applied to the three Australian CMIP5 models (ACC ESS 

1.0, ACCESS 1.3 and CSIRO Mk3.6), with the results described in Watterson et al. (2013b). Here we consider only the tests for climatological 

features, which have been somewhat modified to suit the available data and NRM interests.  
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Again, the M statistic is used to quantify the agreement between each model and the observations, in each season. The variable and domains 

depend on the test, as outlined in Table 4. The variables surface air temperature (tas) and precipitation (pr), without being averaged as was done 

in Table 3, are tested and the domain is that of the Australian land area. The domain for the variable sea level pressure (psl) is over the larger 

region as described in Table 4 in order to capture the pressure systems extending past the continent. Also tested over Australian land are 

incoming solar radiation (rsds) and the diurnal temperature range (DTR; using maximum and minimum temperature). Data for DTR are missing 

for 3 models (CMCC-CM, MPI-SEM-MR and NorESM1-ME).  

The diurnal temperature range is an important indicator for models’ representation of extreme cold and warm temperatures, and  therefore 

contributes to the skill in representing temperature extremes. Table 5 shows a very large spread along M-skill scores for DTR in CMIP5 models 

(from 94 to 496) which indicates that (a) the simulation of DTR is the least skilful of all features listed in Table 4 and (b) the spread of skill is 

largest amongst the CMIP5 models for DTR compared to the other features. 

The ERA-Interim data set is again used as representing the observations for rsds (although given some doubt about its representation of cloud 

cover, the rsds fields, and the resulting scores may not be reliable – see Naud et al. 2014). For DTR, the AWAP data set is used. 

The four other tests use wind data in zonal (east-west) and meridional (north-south) direction, which are available from 20 of the 40 models. The 

tests for wind at 850 hPa and 200 hPa are over the larger region (see Table 4) and are representative measures for skill in capturing the larger 

atmospheric circulation both closer to the surface (850 hPa) and further aloft (200 hPa). The tests for ‘Subtropical Jet’ and ‘Monsoon Onset’ are 

very simplified tests of winds over smaller rectangular regions (see Table 4 for domain details). Wind data from ERA-Interim are used as 

representing the observations. 

Table 4 Overview of tests for nine features of Australian climate, with variables and domain given. All tests are done across the four 

seasons, except for ‘Monsoon Onset’, which is over SON and DJF only.  

Feature  Fields - CMIP5 name Domain 

1.5m Temperature tas Australia – land only 

Rainfall  pr Australia – land only 

Solar radiation rsds Australia – land only 

Diurnal Temperature Range DTR Australia – land only 

Zonal and meridional winds at 850 hPa 

height 
ua, va 850hPa 

Region (longitude: 105 °E-165 °E; latitude: 0 °S-

50 °S) 

Zonal and meridional winds at 200 hPa 

height 
ua, va 200hPa 

Region (longitude: 105 °E-165 °E; latitude: 0 °S-

50 °S) 

Sea Level Pressure psl 
Region (longitude: 105 °E-165 °E; latitude: 0 °S-

40 °S) 

Sub-tropical Jet 
ua, 850,  

500, 200 hPa 

East Australia (longitude: 140 °E-150 °E; latitude: 

15 °S-40 °S) 

Monsoon Onset. 
ua, va 1000 hPa  

ua 850hPa  

North Australia (longitude: 120 °E-150 °E; 

latitude: 10 °S-20 °S) 

 

The scores for the nine tests are given in Table 5. Quantities with larger spatial variation tend to have smaller scores, in particular DTR. Even 

the best score for DTR, from ACCESS1.0, is only 496.   

The top six models (averaged over the nine tests) are: ACCESS-1.0, CMCC-CM, CNRM-CM5, HadGEM2-CC, HadGEM2-ES, and MPI-ESM-

MR. Note that three out of these six have the same atmosphere model. The worst performing models are: BNU-ESM, CESM1-WACCM, GISS-

E2-H-CC, GISS-E2-R, GISS-E2-R-CC, IPSL-CM5A-LR, MIROC-ESM and MIROC-ESM-CHEM. 

The main purpose of the scores is to support the NRM project by providing information about the quality of the models being used for 

projections. Naturally, these tests are only for the climate of the past decades, and the link between such skills and the reliability of climate 

changes is not well established. Nevertheless, skill in simulating the features of climate through the four seasons can add confidence in a 

model’s ability to simulate changes that follow from global warming (Whetton et al. 2007). This confidence is part of the overall assessment of 

projected changes in Australia's climate. The scores for the nine features add to the information available for assessment. It is important to note 

that both versions of ACCESS are well ranked in most of these tests.  
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Table 5 Skill scores for 40 CMIP5 models for nine features of Australian climate. The values are the average M score, times 1000. The top 

values are highlighted in red and lowest values in blue. Where there was some missing data, the score couldn't be calculated and are 

indicated by 'xxx'. Variables are: TAS mean surface temperature, PR precipitation, RSDS solar radiation, DTR diurnal temperature 

range, W850 wind at the 850 hPa level, W200 wind at the 200 hPa level, psl mean sea level pressure, STJ subtropical jet, MO 

monsoon onset. 

Model TAS PR RSDS DTR W850 W200 psl STJ MO 

ACCESS1-0 832 552 604 496 760 750 834 798 645 

ACCESS1-3 792 544 606 198 690 678 798 738 496 

bcc-csm1-1 780 499 699 295 657 684 716 687 543 

bcc-csm1-1-m 766 525 744 365 xxx xxx 811 xxx Xxx 

BNU-ESM 755 451 534 120 xxx xxx 615 xxx Xxx 

CanESM2 824 492 705 426 717 718 812 712 500 

CCSM4 816 379 602 172 720 758 802 744 611 

CESM1-BGC 824 400 645 184 xxx xxx 801 xxx Xxx 

CESM1-CAM5 806 493 544 188 xxx xxx 815 xxx Xxx 

CESM1-WACCM 743 281 337 94 xxx xxx 673 xxx Xxx 

CMCC-CESM 641 479 644 289 xxx xxx 481 xxx Xxx 

CMCC-CM 794 486 698 xxx xxx xxx 757 xxx Xxx 

CMCC-CMS 729 564 725 358 xxx xxx 673 xxx Xxx 

CNRM-CM5 742 602 770 485 xxx xxx 863 xxx Xxx 

CSIRO-Mk3-6-0 744 482 601 400 691 666 657 647 658 

EC-EARTH 687 701 xxx 315 xxx xxx 765 xxx Xxx 

FGOALS-g2 755 535 725 235 667 737 586 625 624 

FIO-ESM 817 424 705 141 xxx xxx 636 xxx Xxx 

GFDL-CM3 781 564 790 172 741 724 731 623 653 

GFDL-ESM2G 716 472 617 122 712 724 798 771 593 

GFDL-ESM2M 728 469 630 118 745 740 731 726 589 

GISS-E2-H 661 490 271 228 662 647 738 748 486 

GISS-E2-H-CC 610 501 269 181 xxx xxx 769 xxx Xxx 

GISS-E2-R 651 461 286 272 xxx xxx 760 xxx Xxx 

GISS-E2-R-CC 731 472 279 265 xxx xxx 779 xxx Xxx 

HadGEM2-AO 808 600 644 496 xxx xxx 797 xxx Xxx 

HadGEM2-CC 800 541 723 474 737 718 782 781 638 

HadGEM2-ES 807 561 715 457 730 735 801 744 602 

inmcm4 681 524 730 290 657 683 815 635 439 

IPSL-CM5A-LR 796 403 414 118 622 659 507 473 390 

IPSL-CM5A-MR 825 404 406 100 674 688 612 531 446 

IPSL-CM5B-LR 760 596 519 128 xxx xxx 559 xxx Xxx 

MIROC5 793 432 805 338 xxx xxx 778 xxx Xxx 

MIROC-ESM 790 342 710 271 519 561 488 552 319 

MIROC-ESM-CHEM 790 333 695 265 517 574 516 560 300 

MPI-ESM-LR 830 593 812 232 xxx xxx 743 xxx Xxx 

MPI-ESM-MR 808 640 799 xxx xxx xxx 704 xxx Xxx 

MRI-CGCM3 726 599 652 350 xxx xxx 743 xxx Xxx 

NorESM1-M 730 347 558 162 699 699 779 774 627 

NorESM1-ME 724 343 559 xxx 676 699 752 785 623 
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The El Niño-Southern Oscillation 

The El Niño-Southern Oscillation (ENSO) phenomenon is the dominant driver of climate variability on seasonal to interannual time scales for 

Australia (see for example Risbey et al. 2009b; Wang et al. 2004a; Wang & Hendon 2007; Cai et al. 2011). While there has been an 

improvement in the simulation of ENSO in climate models from CMIP3 to CMIP5 (see for example Guilyardi et al. 2009; Chapter 14 in IPCC, 

2013), some systematic errors remain and impact to some extent on the simulation of the relationship between ENSO and Australian rainfall 

(Watanabe et al. 2011; Weller and Cai 2013a). However, there are improvements in the multi-model mean which is mostly due to a reduced 

number of poor-performing models (Flato et al. 2013). 

The ENSO-rainfall teleconnection involves mechanisms similar to those related to the rainfall response to global warming (Neelin et al. 2003) 

and therefore provides a valuable insight into each model's rainfall response. While CMIP5 models display a slightly better skill in Australian 

rainfall reductions associated with El Niño (Neelin 2007; Cai et al. 2009; Coelho and Goddard 2009; Langenbrunner and Neelin 2013), there is 

not much additional improvement over CMIP3. There is also little change in their abilities to represent the correlations between the equatorial 

Pacific sea surface temperatures (Niño 3.4 region) and north Australian sea surface temperatures (Catto et al. 2012a, 2012b) with models failing 

to adequately capture the strength of the negative correlations during the second half of the year. In general, the evolution of sea surface 

temperatures in the north Australian region during El Niño and La Niña is still problematic for models to simulate.  

The teleconnection patterns from ENSO to rainfall over Australia are reasonably well s imulated in the key September-November season (Cai et 

al. 2009; Weller and Cai 2013b) in the CMIP3 and CMIP5 multi-model mean. Figure 11 shows the ranked list of the skill of this relationship in 

both CMIP3 and CMIP5 models. While there is clearly a majority of CMIP5 models towards the more skilful end of the list, there are a few 

CMIP5 models showing very little correlation (CSIRO-Mk3-6-0, IPSL-CM5A-MR, IPSL-CM5A-LR, HadCM3) or only small correlation 

(CanESM2, MIROC-ESM, INMCM4, and GFDL-ESM2G). These results are similar to those found previously for CMIP3 (Cai et al. 2009) and 

more recently for CMIP5 (Jourdain et al. 2013). 

Figure 11 Pattern correlations (against the CMAP-HadISST reference pattern) of the ENSO-Australian-rainfall teleconnection pattern for each 

CMIP5 (red) and CMIP3 model (green). A second observed data set (GPCP-HadISST, black bar) is shown on the right while the 

models are ordered in increasing skill towards the right. The ensemble mean of the models are shown in pink (for CMIP5) and l ight 

green (for CMIP3). 

 

The Australian monsoon 

The Australian monsoon is the main driver of annual variation in the tropical regions (Trenberth et al. 2000; Wang and Ding 2008; Moise et al. 

2012) and therefore is an important feature for climate models to correctly simulate. This will also enhance confidence in future projections of 

mean changes and associated impacts (Colman et al. 2011). 
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Figure 12 Monthly seasonal climatology of 850 hPa zonal wind (1986-2005), averaged over 120-150°E, 10-20°S land only for 37 CMIP5 

models, 5 reanalysis products (CFSR, MERRA, NCEP2, ERA40 and ERA-INT; forming the pink shaded band) and the ensemble 

mean of the models of CMIP3 (red) and CMIP5 (blue). The thick black line represents the ensemble mean of CMIP5 excluding 

models not simulating monsoon westerlies over this region. 

 

The Australian monsoon is characterised by an annual reversal of the low level winds and well defined dry and wet seasons (Moise et al. 2012; 

Wang and Ding 2008), and its variability is primarily connected to the Madden-Julian Oscillation (MJO) and ENSO. Most CMIP3 models 

poorly represent the characteristics of the global monsoons and monsoon teleconnections (Randall et al. 2007), with some improvement in 

CMIP5 with respect to the mean climate, seasonal cycle, intraseasonal, and interannual variability (Sperber et al. 2013; also see Figure 9 for 

Northern Australia). Figure 12 shows the annual cycle of low level zonal winds for CMIP5 models and several reanalysis data sets for the 

Australian monsoon. On average the models reversal to westerlies starts later than in the reanalysis (December) but has a similar timing in the 

switch to easterlies in March. Several models fail to simulate monsoon westerlies over northern Australia altogether: GISS-E2-H, GISS-E2-H-

CC, GISS-E2-R, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, INMCM4, ACCESS1-3 and MIROC-ESM-CHEM.  

While the entire annual rainfall cycle has been assessed earlier using the spatial-temporal root-mean-square error (STRMSE, see Figure 10) here 

we focus on the wet season only and assess the spatial distribution of wet season rainfall from the models over the tropical Australia domain. 

Figure 13 shows the ranked list of the skill of Australian tropical rainfall distribution in both CMIP3 and CMIP5 models. While there is clearly a 

majority of CMIP5 models towards the more skilful end of the list, there are a few CMIP5 models showing very little skill (MIROC-ESM, 

MIROC-ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P) or only small skill (GFDL-ESM2G, MIROC5, and HadCM3). 

With respect to the onset of the Australian monsoon, Table 5 also includes the M-score for skill in monsoon onset for CMIP5 models. While 

better models reach a score above 600, several models score below 400 and both MIROC-ESM and MIROC-ESM-CHEM are close to 300.  

Atmospheric blocking 

The climate along the Australian mid-latitudes is predominantly affected by weather regimes such as west-east moving pressure systems or east 

coast lows, and blocking weather regimes are often associated with extreme rainfall events (Risbey et al. 2009a). During blocking, the prevailing 

mid-latitude westerly winds and storm systems are interrupted by a local reversal of the zonal flow resulting in enhanced rainfal l events. The 

strongest correlation between blocking (using a blocking index) and Australian rainfall is during autumn but also in winter. It affects mainly 

south-eastern regions of the continent (Risbey et al. 2009a). 

Climate models in the past have universally underestimated the occurrence of blocking. As in CMIP3, most of the CMIP5 models globally still 

significantly underestimate blocking (Dunn-Sigouin and Son, 2013). Increasing model resolution is expected to improve model representation of 

blocking significantly (IPCC, 2013, Chapter 14). 
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Figure 13 Wet season (Nov-Feb) rainfall pattern correlations (against GPCP reference data set) for CMIP5 (red) and CMIP3 models (green) 

over tropical Australia. A second observed data set (CMAP, black bar) is shown on the left while the models are ordered in 

increasing skill towards the right. 

 

 

During atmospheric blocking the upper tropospheric westerly air stream typically splits into two sections. The strength of th is split can be 

assessed through a combination of the upper air zonal wind field (at 500hPa) at different latitudes integrated into a simple Blocking Index (BI, 

Pook and Gibson 1999 see also Risbey et al. 2009a; Grose et al. 2012): 

BI = 0.5(ua25+ua30-ua40-2ua45-ua50+ua55+ua60) 

Where uax is the zonal wind at 500hPa at latitude x (degrees south). The BI is calculated here at longitude 140°E which represents the region 

over Australia where blocking is typically observed. The CMIP5 models were evaluated with respect to the seasonal correlations of the Blocking 

Index in autumn and winter to rainfall across relevant south-eastern cluster regions (Central Slopes, East Coast South, Murray Basin, Southern 

Slopes) (results not shown). Almost half of the models assessed showed reasonable correlations across several clusters. Models that showed very 

low skill in reproducing this relationship include ACCESS1-3, CanCM4, GFDL-ESM2G, GISS-E2-R and GISS-E2-H.  

Southern Annular Mode 

The Southern Annular Mode (SAM) is the most dominant driver for large-scale climate variability in the mid- and high-latitudes of the Southern 

Hemisphere (Thompson and Solomon, 2002) – describing the alternation of atmospheric mass between high- and mid-latitudes. This alternation 

affects pressure and wind patterns across southern parts of Australia and therefore also impacts on rainfall in these regions  (for more detail,`see 

Hendon et al. 2007; Risbey et al. 2009b). When SAM is in its high phase there are higher pressures over southern Australia, w ind anomalies are 

predominantly easterly and rainfall is reduced on west-facing coastlines but enhanced on east-facing regions. 

CMIP3 and CMIP5 models are able to produce a clear Southern Annular Mode (Raphael and Holland, 2006; Zheng et al. 2013; Barnes and 

Polvani 2013) but there are relatively large differences between models in terms of the exact shape and orientation of this pattern.  

The Indian Ocean Dipole 

Similar to ENSO, the Indian Ocean dipole mode (IOD) is an ocean-atmosphere phenomenon located in the tropical Indian Ocean. The main 

period of impact on Australian rainfall is spring (Sep-Nov) and depending on the phase of the IOD, the ENSO impact can be enhanced over 
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Australia. If the IOD is in its positive phase, El Niños can result in stronger reduction of rainfall and if the IOD is in it s negative phase, La Niñas 

show further enhanced rainfall (Risbey et al. 2009b). 

Most CMIP3 and CMIP5 models are able to reproduce the general features of the IOD but show a large spread in the strength of the IOD (Saji et 

al. 2006; Liu et al. 2011; Cai and Cowan 2013). Most models also show a location bias in the westward extension of the IOD. No substantial 

improvement is seen in CMIP5 compared to CMIP3 (Weller and Cai 2013a). 

A majority of CMIP3 and CMIP5 models also simulate the observed correlation between IOD and ENSO. The magnitude of this correlation 

varies substantially between models, but seems independent of each model’s simulation of ENSO (Saji et al. 2006; Jourdain et al. 2013).  

The teleconnection patterns from both ENSO and IOD to precipitation over Australia are reasonably well simulated in the key September-

November season (Cai et al. 2009; Weller and Cai 2013b) in the CMIP3 and CMIP5 multi-model mean. 

An additional way to assess the spatial structure of the IOD is by computing the Taylor statistics (Taylor, 2001) of the tropical Indian Ocean sea 

surface temperatures where the IOD occurs as shown in Figure 14. These statistics (spatial correlation; spatial root-mean-square error and spatial 

standard deviation) can highlight non-temporal deficiencies in the simulation of this feature. Most CMIP5 models simulated very high spatial 

correlations. Combining the statistics into a skill score as proposed by Taylor (2001) we find that while most CMIP5 models show very high 

spatial correlations (above 0.95), the main difference between more skilful and less skilful models lies in their simulation of the spatial 

variability of sea surface temperatures (horizontal spread of letters in Figure 14). In particular, MRI-CGCM3 and CSIRO-MK3-6-0 have a much 

reduced variability and GFDL-CM3, IPSL-CM5B-LR, ACCESS1-0 and HadCM3 show a far too strong variability (furthest right from the 

reference dashed line). This is similar to previous results from other studies, such as Jourdain et al. (2013). 

The Madden-Julian Oscillation 

During summer the eastward propagating feature of enhanced and diminished convection from the Indian Ocean into the western Pacific known 

as the Madden-Julian Oscillation (MJO; (Madden and Julian, 1972, 1994)) mainly affects the tropics north of 15 °S. It is one of the dominating 

features of intra-seasonal variability (60-90 days) and plays a major role in the onset of the Australian monsoon (Wheeler et al. 2009). 

Various diagnostics have been used to assess the skill of simulating the MJO in climate models (Waliser et al. 2009; Xavier 2012). The main 

model errors in representing the MJO relate to the skill in the model convection schemes and their mean state biases (Kim et al. 2012; Mizuta et 

al. 2012; Inness et al. 2003).  

Figure 14 Taylor plot of spatial statistic of sea surface temperatures from CMIP5 models over the tropical Eastern Indian Ocean against 

HadISST observed sea surface temperatures (REF point at horizontal axis). Each letter represents one CMIP5 model's simulation  

averaged over the period (1986-2005). 

 

Sperber and Kim (2012) provided a simplified metric synthesising the skill of CMIP3 and CMIP5 model results. These metrics are based on lag 

correlation analysis of principal component time series of daily outgoing long-wave radiation. Some of the more skilful models are those with 
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higher resolution (CNRM-CM5, CMCC-CM) while several models showed very low coherence in the propagation of the convection: MIROC-

ESM-CHEM, INM-CM4, IPSL-CM5A-MR, IPSL-CM5A-LR, MIROC-ESM, GFDL-ESM2G and HadGEM2-ES. 

While Sperber and Kim (2012) show that the simulation of the MJO is still a challenge for climate models (see also Lin et al. 2006; Kim et al. 

2009; Xavier et al. 2010), there has been some improvement in CMIP5 in simulating the eastward propagation of the summer MJO convection 

(Hung et al. 2013). Further improvements have been reported for the MJO characteristics in the Pacific (Jiang et al. 2013). In general, CMIP5 

models have improved compared to previous generations of climate models with respect to the MJO (Waliser et al. 2003; Lin et al. 2006; 

Sperber and Annamalai 2008). 

Winds and atmospheric circulation 

Wind fields across Australia are associated with large scale circulation patterns and their seasonal movement. Across the sou thern half of 

Australia, average wind conditions are influenced by the seasonal movement of the sub-tropical high pressure belt (called the Sub-tropical 

Ridge) which separates the mid-latitude westerly winds to the south and the south-east trade winds to the north. Across the north of Australia, 

from about November to March the Asian-Australian monsoon interrupts the trade winds bringing a north-westerly flow across northern 

Australia.  

The evaluation in this study of winds in climate models therefore mainly focuses on these two large scale seasonal changes: the north-south shift 

across the southern half of Australia and the east-west reversal of winds across tropical Australia. Due to the sparseness of long-term, high 

quality wind measurements from terrestrial anemometers, a high quality gridded data set for wind is not available over Australia (Jakob, 2010). 

Therefore 10 m winds from reanalysis products are commonly used as a baseline against which climate model winds are compared (see Table 1 

for overview of reanalysis data sets).The annual cycle in the pressure and latitude of the sub-tropical high pressure belt known as the Sub-

tropical Ridge (STR) is fairly well represented in the CMIP3 mean, but each model has some biases in position and intensity (Kent et al. 2013). 

This means there are typically some biases in the northern boundary of the westerly circulation. Also, the relationship between the STR and 

rainfall variability is poorly simulated in some models and trends in the pressure of the ridge are underestimated by all CMIP3 models (Kent et 

al. 2013; Timbal and Drosdowsky 2013), and the results are similar in CMIP5 models (Grose et al. 2015).  

The path of westerly weather system generally to the south of the subtropical ridge is known as the ‘storm track’ and is a crucial feature of 

rainfall variability in southern Australia. The representation of the storm track, and its connection to processes such as EN SO, has improved 

from CMIP3 to CMIP5 but certain models still show poor performance (Grainger et al. 2014).  

Regarding the wind reversal over tropical Australia during the monsoon season, Figure 12 shows the annual cycle of low level zonal winds for 

CMIP5 models and several reanalysis data sets. As mentioned earlier, on average the models’ reversal to westerlies starts later compared to the 

reanalysis but has a similar timing in the switch back to easterlies in March. As noted, several models fail to simulate monsoon westerlies over 

northern Australia altogether. 

Evaluation of simulated rainfall and temperature trends  

In addition to the long-term climatology and the annual cycle (see previous section), climate models are also evaluated with respect to how well 

they are able to reproduce observed climate change. Aspects of climate change have been extensively evaluated at globa l to continental scales 

and the simulated warming is found to agree well with observations (Stone et al. 2009). Changes in global precipitation, on the other hand, are 

less well reproduced in simulations (Zhang et al. 2007). Recently, global climate models have also been evaluated against observed regional 

climate change (van Oldenborgh et al. 2009, van Haren et al. 2012, van Oldenborgh et al. 2013, Bhend and Whetton, 2013).  

Recent regional trends in seasonal mean daily maximum and minimum temperature and rainfall have been evaluated (Bhend and Whetton, 

2013). Simulated trends in the historical experiment from the CMIP5 ensemble are compared to the observed trends. Climate models used here 

have been run with a comprehensive set of observed and reconstructed boundary conditions including the changing atmospheric concentrations 

of greenhouse gases, aerosols, and ozone as well as solar irradiance changes. The models thus produce a realistic - within model limitations - 

representation of recent climate change. It is important to note, however, that a portion of the observed and simulated recent change is due to 

natural internal variability in the climate system. This part of climate change differs between observations and simulations, as the simulations 

are not constrained to exhibit internal variability that is in phase with the observed internal variability. The remainder of the change – the signal 

– is due to changes in external forcing mechanisms and therefore in principle reproducible in long-term simulations. Only this deterministic, 

forced component of climate change can be used for evaluation of climate models. Therefore, being able to separate signal from noise (internal 

variability) is crucial when evaluating transient behaviour in climate models and a multitude of methods to achieve this exists (Bindoff et al. 

2013). For simplicity, we assumed here that the regional signal in both temperature and rainfall over the period from 1956 to 2005 is 

approximately linear. Simulated seasonal rainfall and daily maximum and minimum temperature trends from 42 global climate models in the 

CMIP5 ensemble are compared with observed trends in the station-based gridded datasets. ACORN-SAT (Trewin, 2013) and CRU TS3.20 
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(Harris et al. 2013) were used for temperature, and AWAP (Jones et al. 2009, Raupach et al. 2009; 2012) and CRU TS3.20 for precipitation 

(listed in Table 1 under CRU). We compute linear trends from 1956 to 2005 using ordinary least squares regression. 

The observed trends in seasonal mean daily maximum temperature from 1956 to 2005 show significant warming in eastern and southern 

Australia and widespread cooling (some of which is statistically significant) in the summer half-year in north-western Australia (Figure 15 a-d). 

The ensemble median simulated trends for the same period show consistent warming and less than 10 per cent of the simulations reproduce the 

cooling in spring (SON) and summer (DJF) in north-western Australia (Figure 15 e-h). While the trend biases are locally significant (at 90 per 

cent level based on a simple estimate of internal variability in observations and model time series) in the majority of the climate models , the area 

where significant differences are found is generally not larger than what one would expect due to internal variability a lone. Results for trends in 

seasonal mean daily minimum temperatures are qualitatively similar (not shown).  

Figure 15 Observed trend in seasonal mean daily maximum temperature from 1956 to 2005 (a-d) and median of simulated trends from 42 

CMIP5 models (e-h). Stippling in a-d denotes areas where the observed trend is significantly different from zero at the 10% level. 

Crosses (dashes) in e-h denote areas where less than 10 per cent of the simulated trends are as large (small) as the observed trend.  

 

Figure 16 As in Figure 15 but for seasonal rainfall in mm per decade 
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The picture is similar for rainfall. The area where significant differences are found between observed and simulated rainfall trends is generally 

not larger than what one expects due to internal variability alone (Figure 16 a-d). Less than 10 per cent of the models reproduce the significant 

wetting in north-western Australia in summer (DJF), the drying in south-eastern Australia in autumn (MAM) and the wetting in north-eastern 

Australia in spring (SON). Additional analyses reveal that the majority of the models significantly (at the 10 per cent level) underestimate the 

observed wetting in north-western Australia in summer and the observed drying in south-eastern Australia in spring (not shown.) (i.e. due to 

random chance). 

In conclusion, areas where the CMIP5 ensemble fails to reproduce observed trends from 1956-2005 in seasonal mean daily maximum and 

minimum temperature and seasonal rainfall are evident. The extent of the areas for which these discrepancies exist, however, is generally not 

larger than expected due to the pronounced variability on inter-annual to decadal scales. Therefore, there is no conclusive evidence that CMIP5 

models fail to reproduce recent observed trends in daily maximum and minimum temperature and rainfall. Nevertheless, confiden ce in rainfall 

projections is inevitably reduced where consistency is low, particularly north-western Australia in summer and south-eastern Australia in 

autumn. 

Evaluation of extremes in climate models 

Extreme events refer to weather and climate events near the ‘tail’ of the probability distribution. They are in  general difficult to realistically 

represent in climate models. The 2007 IPCC AR4 concluded that models showed some considerable skill in simulating the statist ics of extreme 

events (especially for temperature extremes) despite their coarse resolution (Randall et al. 2007). In a separate report, the IPCC has conducted an 

assessment of extreme events in the context of climate change: the Special Report on Managing the Risks of Extreme Events and  Disasters to 

Advance Climate Change Adaptation (SREX) (IPCC, 2012). Although climate model evaluation with respect to extreme events was not done in 

a consistent manner in SREX, model performance was taken into account when projections uncertainty was assessed.  

The evaluation of the simulation of extremes in climate models is important because the impacts of climate change will be experienced more 

profoundly in terms of the frequency, intensity or duration of extreme events (e.g., heat waves, droughts, extreme rainfall events). 

The recently published IPCC AR5 WG1 report (IPCC, 2013) summarised that the global distribution of temperature extremes are represented 

well by CMIP5 models. Furthermore, it reported that CMIP5 models tend to simulate more intense and thus more realistic precip itation 

extremes than CMIP3, which could be partly due to generally higher horizontal resolution. Related to this is the statement that CMIP5 models 

are also able to better simulate aspects of large-scale drought. 

Specifically for Australia, we have assessed the bias in three of the extreme indices from the CMIP5 model ensemble: annual and seasonal 

maximum of daily maximum temperature (Txx); annual and seasonal minimum of daily minimum temperature (Tnn) and the annual and  

seasonal maximum 1-day rainfall event (rx1day). Additionally, the 20-year return value of these quantities has been compared to observed 

values. There are currently two global observation-based data sets available to assess climate extreme indices: the GHCNDEX (Donat et al. 

2013a; Fischer and Knutti 2014) and the HadEX2 (Donat et al. 2013b) data set, with the latter having less spatial coverage, in particular across 

northern Australia. 

A comparison between CMIP5 model daily maximum rainfall and observations is shown in Figure 17 for seasons and annually for two example 

clusters; Monsoonal North (MN) and Southern Slopes (SS). With less data coverage in tropical Australia for the HadEX2 data set, for  the 

Monsoonal North we focus on how the models are placed compared to the GHCNDEX data points (red downward triangles in Figure 17). 

Overall the observed daily maximum rainfall amounts are mostly captured by the Interquartile Range (middle 50 % of CMIP5 mode l 

simulations) of the model ensemble. This is true for both the maximum daily rainfall event within a year (Figure 17a) as well as the maximum 

daily rainfall event over a 20 year period (Figure 17b). For summer and averaged over the entire Monsoonal North cluster, the latter event is 

around 120 mm in the observations and very close to the ensemble median. The spread is fairly substantial – particular towards the lower end 

with some models showing less than half the observed rainfall during the maximum event. The reason for this could be the lower skill in the 

representation of both tropical cyclones. For the Southern Slopes cluster, the CMIP5 models have a tendency to underestimate the maximum 1 -

day rainfall event during a year (Figure 17c) but are still within range. The 20-year event (Figure 17d) is somewhat better captured. Noteworthy 

is the fact that despite on average receiving more rainfall during winter (JJA), the maximum one-day rainfall events are stronger in the summer 

months. This is the contribution of intense convective events during the summer season. 
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Figure 17 Daily extreme rainfall (left column: for daily maximum rainfall per year; ((a) for cluster MN and (c) for cluster SS): for daily 

maximum rainfall in 20 years ((b) for cluster MN and (d) for cluster SS) across seasons and annually (units are mm/day). CMIP 5 

models are represented by the box-whisker while coloured symbols represent reanalysis products (see Table 5.2.1 of the CCiA 

Technical Report) and two gridded observational data products (see text). 

 

 

Other clusters show very similar results quantitatively: fairly large model spread around median maximum rainfall values that are not too far 

from that observed.  

However, it should be noted that this assessment is for rain events averaged at large spatial scales, whereas many extreme ra infall events in the 

real world occur at a far smaller spatial scale. These events are included not as single small-scale events but aggregated over each larger grid 

cell. 

Annual and 20 year daily maximum and minimum temperatures show similar biases to mean temperature: a slight cold bias for max imum and 

slight warm bias for minimum temperatures (not shown). As with rainfall, the model spread is fairly large (up to 10 degrees for some seasons for 

both daily maximum and minimum temperature). 

In summary, the CMIP5 models are able to capture the annual maximum 1-day rainfall event reasonably well. Additionally, they are able to 

simulate both annual and seasonal daily maximum and minimum temperatures with some skill (not shown).  

Evaluation of downscaling simulations 

The new Climate Change projections for Australia (CSIRO and Bureau of Meteorology, 2015) includes regional climate change projections 

information from two downscaling methods (one dynamical downscaling – CCAM; and one statistical downscaling – BOM-SDM). Since model 

evaluation forms one of the lines of evidence used to construct confidence levels around projected changes of Australian climate, it is necessary 

to also provide some information about how well the downscaling simulations perform over the historical period. 

Each of the two methods used have important aspects that bring them closer to observations. For the statistical downscaling method, observed 

relationships between local synoptic situations and the large scale climate are used to build the statistical model. This usually leads to a very 

close representation of the observed climate in the statistical downscaling model, (almost) independent of the choice of host  global climate 

model. A set of 22 global climate models have been used as hosts and the resulting statistical downscaling model simulations are all very similar 

over the historical period (1986-2005). For the dynamical downscaling method, the monthly sea surface temperature data used as input from 

each global climate model simulation are initially adjusted to match the observed mean climate before being used to build the dynamical 
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downscaling simulation. This means the resulting dynamically downscaled simulations are again fairly similar to each other and to the 

observations over the historical period (1986-2005). Not surprisingly then, for the mean climate we find that all performance metrics are very 

high for temperature and rainfall, as well as for mean sea level pressure in the dynamical downscaling simulations (not shown). 

Additionally assessed are two measures of temporal variability for rainfall: the annual cycle (through the spatial-temporal root mean square 

error, STRMSE following Gleckler et al. (2008) as above) and the inter-annual variability of rainfall – both at cluster level. Figure 18 shows the 

comparison of the STRMSE for both ensembles across the cluster regions and the entire continent. Even though the dynamical downscaling 

ensemble only has 6 members (compared to 22 for the statistical downscaling ensemble), the spread in performance is quite similar for both. 

Apart from the Southern Slopes (SS) and Murray Basin (MB) clusters, the size of the error is comparable between the two ensembles as well. 

The dynamical downscaling shows larger STRMSE than the statistical downscaling for SS and MB clusters. For all other non-tropical clusters, 

the median STRMSE is mostly below 0.5 mm/day. The larger inter-model spread is seen for the tropical cluster regions (Wet Tropics and 

Monsoonal North) where climatological rainfall is very high and seasonal differences are also very pronounced. 

Figure 18 Box-Whisker plot of the spatial-temporal root mean square error (STRMSE; larger values indicate larger errors compared to 

observations) for rainfall from two downscaled ensembles against AWAP rainfall for Australia and the eight cluster regions. The 

downscaled ensembles are the BOM-SDM statistical downscaled ensemble (green) and the CCAM dynamical downscaled 

ensemble (blue). 

 

The year-to-year variability of rainfall is an important feature of the climate within each of the clusters and Figure 19 shows a comparison of the 

two downscaling ensembles against various observational data sets (including AWAP) for the period 1986-2005. In the observations, the inter-

annual variability is fairly modest except along the East Coast and over tropical Australia where the impact of ENSO and monsoonal rainfall is 

strong. The statistical downscaling ensemble is able to capture the extra-tropical inter-annual rainfall variability well, whereas the dynamical 

downscaling ensemble shows especially good skill over the tropical clusters and the Rangeland cluster.  

It should be noted that whereas downscaling generally involves processes that bring the simulation of the current climate fur ther in line with 

observations, the downscaling simulations inherit much of the climate change ‘signal’ from the host model. Therefore the set of excellent 

evaluation metrics shown above does not lead to a proportional increase in the confidence in the projections from downscaling compared to 

GCMs. They do however show that both downscaling methods achieved their aim: to produce higher resolution outputs with smaller biases than 

GCMs (compare 1.13 mm/day median STRMSE across Australia in GCMs (Figure 10) to around 0.25 mm/day in downscaled simulations) that 

may then reveal regional detail in the climate change signal at finer scale than GCMs. 
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Figure 19 Box-Whisker plot of the temporal standard deviation of annual rainfall (1986-2005) from two downscaled ensembles and gridded 

observational rainfall for Australia and the eight cluster regions. The downscaled ensembles are the BOM-SDM statistical 

downscaled ensemble (green) and the CCAM dynamical downscaled ensemble (blue). The observational data includes AWAP.  

 

Discussion and Conclusion 

Model evaluation is an important tool to help rate confidence in climate model simulations. This can add to the overall confidence assessment 

for future projections of the Australian climate. Additionally it can highlight significant model deficiencies that may affect the selection of a 

subset of models for use in impact assessment. Following is a synthesis and discussion of the main findings of the model evaluation for 

Australian climate, drawing on the original work and also the literature review presented above. 

Atmospheric variables 

The CMIP5 models are able to capture the broad-scale characteristics of the 1986-2005 average surface air temperature, rainfall and surface 

wind climatology. However they display some important deficiencies in simulating the finer details, especially for rainfall. Sometimes model 

skill can be impacted by large scale biases in the models. For example in some models the so-called "cold-tongue" bias in the central Pacific 

Ocean influences Australian mean rainfall directly as well as through the ENSO teleconnection to Australian rainfall and therefore results in an 

additional bias in the annual rainfall cycle. There are also biases in the representation of the seasonal wind reversal across tropical Australia 

around the onset of the monsoon. 

The GISS-E2 models (GISS-E2-H, GISS-E2-H-CC and GISS-E2-R) and MIROC-ESM models (MIROC-ESM and MIROC-ESM-CHEM) 

provide consistently poorer simulations of the average climate across all atmospheric variables examined. Additionally, IPSL-CM5A-LR shows 

deficient simulations for several fields and both NorESM1-M models are particularly deficient for mean rainfall across Australia. 

Regions and clusters 

Some regions and clusters are more difficult to simulate than others (for temperature and rainfall). This is typically the case when (a) the region 

or cluster is quite small and therefore only a few grid cells contribute to the statistics; and (b) where topography and coas tlines play a major role. 

For example, the skill of simulation of rainfall is acutely linked to surface fields such as topography,  coastlines and land surface cover. This is 

one of the reasons why rainfall varies strongly at regional scales. Therefore higher resolution models can potentially better  resolve these 

processes. The Wet Tropics region is a good example for both being a small cluster region and having significant topography. Others are the 

Southern Slopes sub-clusters in Tasmania and the East Coast cluster. 

For rainfall, the two models CESM1-WACCM and CMCC-CESM show particularly poor simulations across regions in Australia and GISS 

models GISS-E2-H, GISS-E2-H-CC and GISS-E2-R are similarly deficient mainly over the Wet Tropics and Rangelands regions (Table 3). A 

few other models showing deficiencies only over some regions include BNU-ESM (for Southern and Eastern Australia); GFDL-ESM2M (for 
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Southern Australia); IPSL-CM5A-LR and IPSL-CM5B-LR (for Eastern Australia); and MIROC-ESM (scoring the lowest for the entire 

continent). 

Climate features and patterns of variability 

Most of the CMIP5 global climate models are able to reproduce the major climate features (SAM, monsoon, pressure systems, sub-tropical jet, 

circulation – see Table 5) and modes of variability (seasonal cycle, ENSO, Indian Ocean Dipole). Three models (IPSL-CM5A-MR, IPSL-

CM5A-LR and CSIRO-MK3-6-0) show unusually low skill with respect to the ENSO-rainfall teleconnection. This is partly due to their bias in 

the equatorial sea surface temperatures. The following models do not simulate the reversal to monsoon westerlies across tropical Australia 

during the monsoon season: GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, INMCM4, 

ACCESS1-3 and MIROC-ESM-CHEM.  

Recent observed trends 

The trend analysis did not provide conclusive evidence that CMIP5 models fail to reproduce 1956-2005 observed trends in daily maximum and 

minimum temperature and rainfall. However, lack of consistency in simulated recent rainfall trends would warrant reduced confidence in 

projected changes – this is particularly the case for north-western Australia in summer and south-eastern Australia in autumn. 

Extremes 

CMIP5 models are able to capture the annual maximum 1-day rainfall events across different clusters reasonably well. Additionally, they are 

able to simulate both annual and seasonal daily maximum and minimum temperatures with some skill.  

Downscaling simulations 

Because of the inherent nature of the downscaling methods, the rainfall and temperature climatology is simulated very well. Some differences 

between the statistical and dynamical method are seen when evaluating climate variability, with the dynamical scheme showing better ability to 

simulate higher inter-annual variability (in the tropics) while the statistical scheme shows better ability across the southern half of Australia. 

CMIP5 model reliability and implication for projections 

Despite some models performing poorly across multiple evaluation metrics, the approach adopted for generating climate change projections for 

Australia has been to equally weight all participating CMIP5 models. In forming ranges of projected change for Australia using CMIP5, 

factoring in model performance (by different methods weighting or model elimination) does not have a strong effect (CSIRO and Bureau of 

Meteorology 2015), and is not done routinely in the ranges of projected change presented in this work (CSIRO and Bureau of Meteorology 

2015). Nevertheless the model performance results are used in two other important ways. First, they are considered in formulating the 

confidence rating that is attached to the CMIP5 projections (CCiA 2014). Secondly, poor performing models are flagged in the Climate Futures 

tool (Whetton et al. 2012; Clarke et al. 2011), to guard against these models being selected when forming a small set of models for use in impact 

assessment. 

Finally, from the results of the analysis presented in the individual sections of this paper, the following models were identified as poor 

performing models, for the reasons outlined (and summarised in Table 6). All of these models should be used with caution in any projection 

work within Australian regions or for variables, where the noted model deficiencies are likely to be particularly relevant. The models are:  

MIROC-ESM and MIROC-ESM-CHEM don't simulate temperature and rainfall over Australia well. They also do not produce monsoon 

westerlies during the monsoon season and therefore show deficient wet season rainfall (spatial distribution). Both models score low on the 

simple MJO skill (propagating convection into tropical region), reported by Sperber and Kim (2012). MIROC-ESM additionally shows deficient 

ENSO-rainfall teleconnection for Australia. 

GISS-E2H, GISS-E2H-CC and GISS-E2R show low scores for temperature and rainfall across Australia. They also simulate low scores 

averaged across various climate features and don't produce monsoon westerlies during the wet season over tropical Australia. Two of the three 

GISS models do not show a correlation between blocking and rainfall over Australia.  
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Table 6: Summary of models scoring low on various skill metrics used throughout the model evaluation process. For each evaluation the 

lowest 6 -8 models are included. The column on the right gives the overall sum of how often a model fell into the lower group.  
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ACCESS1-0        X  1 

ACCESS1-3     X  X   2 

BNU-ESM, X  X   X    3 

CanCM4       X   1 

CanESM2    X      1 

CCSM4,  X        1 

CESM1-BGC,  X        1 

CESM1-WACCM, X X X       3 

CMCC-CESM, X         1 

CMCC-CMS  X        1 

CSIRO-Mk3-6-0    X    X  2 

GFDL-CM3        X  1 

GFDL-ESM2G    X   X  X 3 

GISS-E2-H, X  X  X  X   4 

GISS-E2-H-CC, X  X  X     3 

GISS-E2-R   X  X  X   3 

HadCM3    X    X  2 

HadGEM2-ES         X 1 

INMCM4    X X    X 3 

IPSL-CM5A-LR    X X    X 3 

IPSL-CM5A-MR    X X    X 3 

IPSL-CM5B-LR        X  1 

MIROC-ESM X   X X X   X 5 

MIROC-ESM-CHEM X    X X   X 4 

MPI-ESM-LR      X    1 

MPI-ESM-MR      X    1 

MPI-ESM-P      X    1 

MRI-CGCM3        X  1 

NorESM1-M,  X        1 

NorESM1-ME,  X        1 

 

IPSL-CM5A-MR and IPSL-CM5A-LR show unusually low skill with respect to the ENSO-rainfall teleconnection over Australia. These two 

IPSL models also have deficient simulation of larger circulation (no monsoon westerlies) and propagating convection (low MJO related skill) 

across tropical Australia. 

CESM1-WACCM and BNU-ESM are equally low in skill for temperature and rainfall simulations across Australia and averaged over nine 

climate features important for Australia. Additionally, CESM1-WACCM shows deficiencies in simulating the annual cycle of rainfall while 

BNU-ESM has lower skill in the spatial representation of wet season rainfall.  

Similar to the IPSL models mentioned above, the INMCM4 model has low skill in representing the ENSO-rainfall relationship for Australia and 

does not produce monsoon westerlies during the wet season over tropical Australia. Additionally, there is low MJO related skill.  
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GFDL-ESM-2G has low skill in representing the ENSO-rainfall relationship for Australia and does not show a correlation between blocking and 

rainfall over Australia. Additionally, there is low MJO related skill.  
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