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Summary 

This report provides information regarding the ESCI downscaled regional climate model (RCM) 

projections for Australia.  The aim is to produce weather and climate data with f iner spatial and 

temporal resolution than global climate models (GCMs) for enhanced climate change projections 

information. In particular, the ESCI downscaling data are intended to contribute to an enhanced 

representation of  plausible future projections, including of extreme events, relevant to energy sector 

applications such as future planning around reliability and resilience (e.g., hazard-specif ic case studies 

and risk assessments).  We describe the approaches used to create the downscaled climate datasets, 

drawing on various methods for downscaling as applied to a range of  GCMs under dif ferent emission 

pathways.  Post-processing of the downscaling projection data is also described, including calibration 

based on assessments and evaluations using observations-based data. We also explain some of  the 

analysis for quantifying Realised Added Value and calculating average recurrence intervals for 1-in-5 

year, 1-in-10 year and 1-in-20 year events. 

The model evaluation results indicate that downscaling can play an important role in providing a more 

comprehensive representation of  plausible future projected changes, particularly in relation to regional 

details for hazards and extremes.  We also note the creation of  some hazard datasets (e.g., to support 

bushf ires, extreme temperatures and winds), with those details provided  in the ESCI Standardised 

Method for Projections Likelihood (SMPL) report. 

Key f indings f rom this report are: 

• The ESCI project delivered a large step up in regional climate modelling for Australia, including 

the f irst production of BARPA (Bureau of  Meteorology Atmospheric high-resolution Regional 

Projections for Australia) projections for user applications, as well as new CCAM (Conformal 

Cubic Atmospheric Model) projections.  It also included the new NARCliM (NSW and ACT 

Regional Climate Modelling) projections, based on CMIP5 GCMs. A calibration method was 

also applied to the regional climate projections, with that method having special attention to 

extremes (based on quantile matching).  This was the f irst time that such a method was used 

for regional projections in Australia, further helping to improve the data for user applications as 

compared to what was previously available 

• Regional models are found to add ‘Realised Added Value’ with respect to the host GCM in 

general and for extremes, as well as in areas of  complex topography near coastlines (noting 

that this is where a lot of  Australia's population and inf rastructure are lo cated). 

• Regional models are found to perform with biases that can be comparable in size to the biases 

found in the host GCMs, such that appropriate calibration methods are recommended (as 

applied for the project outputs as detailed in this report).  

• Realised Added Value can be further improved by applying bias correction methods, with better 

results than if  the host GCM is bias corrected, as another demonstration of  the value of  

downscaling. 

• The set of  regional model projections available for Australia has improved significantly through 

this project, providing additional diversity of approaches and enhancements for existing 

approaches.  The set of  RCM projections are somewhat representative of  the range of  

projected change f rom the broader set of  GCM projections.  However, the smaller number of  

regional climate model experiments compared to CMIP global models, means that GCM 

projections data may also be useful lines of  evidence to consider depending on the application.  

Production of some calibrated GCM projections are also described in this report, to further 

broaden the range of  available projections information provided through this project.  
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• The regional climate simulations appear to be producing plausible projections (e.g., with respect 

to climate drivers such as the El Niño – Southern Oscillation).  Future analysis may also provide 

more insight on the downscaling projections, as well as future activities that may increase the 

set of  downscaled regional projections available in the future. 

It can be time-consuming and complex to deal with data f rom many dif ferent models, and there was a 

clear message f rom the electricity sector that they wanted guidance on a minimum set of  data that 
could be used for risk assessment. The recommendation of  the ESCI project was informed by the 
analysis described here and is provided in a separate document: ESCI Key Concept – ESCI 
recommended data sets, testing and validation. The recommendation considered the strengths and 
weaknesses of  the datasets described above and the range of  projected climate change in each, The 
project then recommended a subset of  four models that sample key uncertainties and can be used in 
most risk assessments13. The minimum recommended datasets are listed in Table 1 below. 
 

Table1: ESCI project recommended data sets. ESCI Guidance notes that best and worst cases are context-specific to 

the application and can be different for different regions of Australia. This default considers temperature and rainfall for 

most regions of Australia. Different downscaling and post-processing techniques give different results: other choices 

should be considered in addition wherever possible   

  Global Climate 

Model  
Downscaling 

model  
Northern 

Australia  
Southern 

Australia  
Eastern 

Australia  
Inland 

(Rangelands)  
1  GFDL-ESM2M  CCAM  Warm Dry  Warm Dry  Warm Dry  Hot Dry  

2  CanESM2  NARCliM-j  Hot  Warm  Hot  Hot  

3  ACCESS1.0  BARPA  Mid case  Mid case  Mid case  Mid case  

4  NorESM1-M  CCAM  Warm Wet  Mid case  Warm Wet  Warm Wet  
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1. Objectives of downscaling 

In order to enhance the existing climate projection datasets available for Australia, we have developed 

additional downscaling datasets and collaborated to include NARCliM regional projections (in particular 

noting the NSW DPIE as a key agency for supporting NARCliM usage here for the ESCI project).  

These downscaling datasets differ f rom their parent GCMs in several ways, including: 

• Finer spatial and temporal resolution of  the projection data 

• Improved representation of  some extreme weather events 

• Additional variables relevant for the electricity sector that are not available in the CMIP5 GCM 

datasets 

• Improved representation of  coastal and urban regions as well as areas of  complex topography  

• Finer spatial representation of  land cover characteristics. 

During the ESCI project, downscaled datasets have been made available in case studies and for 

stakeholders to aid with assessing risk of  different hazards under future global warming pathways.   

Examples include: 

• Extreme temperatures 

• Bushf ires 

• Hydrological projections  

These hazard datasets are described and analysed in the Standardised Method for Projections 

Likelihood (SMPL) report that considers multiple lines of  evidence (e.g., observations and physical 

process understanding) in addition to the projection data detailed in this downscaling projections report. 

Details on downscaling applications during the project are also contained in the case study report for 

individual hazards, which involved user co-design and guidance on what information and data needs 

are most useful for their applications. Such user engagement examples during the project helped guide 

the downscaling and postprocessing that was done to lead to the end products for the projections as 

described in subsequent sections of this report. 

This report describes the downscaling work undertaken for ESCI, and documents model evaluation and 

calibration for resultant data products. The report also addresses the following points pertaining to the 

ESCI downscaled datasets: 

• What is the methodology behind the downscaling used for each dataset? 

• What evaluation and calibration were applied to help them be more f it for purpose? 

• What data products are available for stakeholders and researchers? 

 

The report also provides additional analysis on downscaling performance under the appendix for 

specif ic models. 

Note that the purpose of  the ESCI downscaled datasets is to supplement and enhance the available 

climate projection data (such as that available on Climate Change in Australia (CCiA)), so that the 

electricity sector can make better-informed decisions to manage climate risk. These datasets are not 

intended to replace existing analysis based on GCMs nor invalidate any previous analysis.  Rather we 
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envisage that these datasets will be useful for stakeholders and researchers who have already 

employed some level of  analysis of climate projections (e.g., based on CCiA), but need additional 

information, additional resolution, additional variables or more nuanced calibration applied (e.g., for 

representing extremes in 'user-ready' data). 

Finally, it is worth acknowledging that the science of  climate projections and global warming is 

continuing to evolve and improve.  New model intercomparison experiments such as CMIP6 will provide 

additional insights in the future. Also, new regional projections f rom a range of  sources will help to 

better understand the impacts of  the projected changes in climate.  Nevertheless, the data presented 

here is consistent with our present understanding of  climate change and should continue to help 

stakeholders better understand the climate change risks that they may be facing now as well as in 

years and decades to come. 

 

2. ESCI downscaling experiment design 

The experimental design for ESCI regional climate projections is based on a multi-method, multi-model 

approach, as no single regional modelling approach can claim to be perfect for representing future 

climate changes. Considering an ensemble of  regional climate model (RCM) approaches can therefore 

help provide improved representation of the range of  future climate change.  Using a multi-model and 

multi-method approach is consistent with international best practice (e.g., Christensen et al 2007, Giorgi 

and Gutowski 2016).  The dif ferences in the projections by different downscaling methods can also be 

valuable for estimating the degree of  confidence in the regional projections (combined with the broader 

uncertainly f rom the CMIP5 GCMs), where more consistent projections between modelling approaches 

can generally be treated with higher conf idence than for predictions with larger variation between 

modelling approaches. 

For ESCI we considered several approaches to statistical calibration and dynamical downscaling, 

namely: 

• Delta-scaling of  historical weather data using projection changes f rom GCMs – see Climate 

Change in Australia Technical Report section 9.3.4 (statistical calibration/downscaling) 

• Quantile Matching of  Extremes (QME) of  simulated weather data using quantile adjustments 

f rom historical weather data (statistical calibration/downscaling) 

• Dynamical downscaling with BARPA (based on the Unif ied Model) 

• Dynamical downscaling with CCAM 

• Dynamical downscaling with NARCliM v1.5 (using existing data f rom the NARCliM CORDEX 

simulations based on the Weather Research and Forecasting model) 

The above list represents a combination of statistical calibration and dynamical downscaling 

approaches, as well as varying levels of  complexity.  Although no single approach is universally 

preferred for all applications, some methods may already be used by some stakeholders of ESCI and it 

is important to compare these methods to other approaches.  Furthermore, we f ind that combining 

approaches of ten leads to better outcomes (e.g., as is the case for QME with regional models as 

detailed in later sections of this report).   In the following sub-sections, we outline the design of  each of  

the individual calibration and downscaling methods. 
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Table 1 summarises the CMIP5 GCMs downscaled by the various methods described in this report.   

Seven of  the eight CMIP5 GCMs were recommended in Box 9.2 of  the Climate Change in Australia 

Technical Report1.  Note that dif ferent techniques have been applied based on different GCMs in some 

cases, with the GCM ACCESS1-0 used by all methods and hence is a useful point of comparison 

across the dif ferent techniques. 

 

 

Table 1: Summary of statistical approaches and dynamical downscaling methods and their host GCMs for ESCI.  CCAM 

only downscaled RCP8.5 for CNRM-CM5. 

 

2.1 Delta-scaling 

Delta-scaling is a technique where the monthly-mean change predicted by a GCM is applied to a high-

resolution historical weather dataset (e.g., on a 5km x 5km grid).  This approach is cost effective for 

producing a high-resolution dataset and only requires monthly-mean changes f rom a GCM, making a 

wider range of  climate change scenarios more accessible.  The method does assume that all parts of  

the probability distribution change by the same amount (i.e., the mean and the extremes) and that the 

sequencing of  events in the future will be the same as the past. While these assumptions are broken in 

many cases it is nevertheless a useful f irst estimate particularly for temperature.  For ESCI, this method 

has been modif ied to allow sub-daily data to be processed based on daily maximum and minimum 

temperatures. 

 

2.2 Quantile Matching for Extremes 

Climate model simulations approximate daily weather data, but they are not a perfect match to historical 

data, so their output cannot be used directly in risk assessments in many cases. The calibration method 

known as Quantile Matching for Extremes (QME) corrects for bias at individual quantiles (i.e., at 

dif ferent parts of the occurrence f requency distribution). In particular, the QME method is characterised 

 

1 ACCESS1-3 is an additional model that was not part of the CCiA recommended models. 
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by special attention in relation to the calibration of  extreme values. The calibrated weather data retain 

the characteristics simulated by the climate model, with adjustments based on historical weather data.  

For further details on the QME method, see Dowdy (2020) with previous examp les of  its application 

including for GCMs in relation to f ire weather projections (Dowdy et al. 2019). 

The QME method has been applied for some key datasets as part of  ESCI, including for temperature, 

rainfall and Forest Fire Danger Index (FFDI, McArthur 1967) based on the output f rom various GCMs, 

as well as f rom various regional climate models (RCMs). The assessment details on these datasets 

including with QME applied, are provided in subsequent sections. 

 

2.3 BARPA v1.2 

Bureau of  Meteorology Atmospheric Regional Projections for Australia (BARPA, Su et al. 2021) is 

developed at the Australian Bureau of  Meteorology (BoM) with collaborations with the UK Met Of f ice 

and other Unif ied Model partners. It uses the same modelling components deployed in the BoM’s short-

range and seasonal weather prediction systems (Australian Community Climate and Earth-System 

Simulator (ACCESS)) and the Australian regional reanalysis (BARRA; Su et al. 2019; Su et al. 2020). 

BARPA uses a limited-area regional climate model (RCM) conf iguration of the moderate-resolution 

global and kilometre-resolution regional models used at BoM and Met Of f ice. These conf igurations 

have been tested and used in the Met Of f ice's UK Climate Projections 2018 (UKCP18, Murphy et al. 

2018), and are adapted for Australian local conditions.  

In BARPA, the moderate-resolution RCM, BARPA-R, is conf igured with 70 vertical levels and a 12 km 

horizontal resolution grids over eastern Australia. Reacting to the large-scale forcing by the global 

models at its domain boundaries (lateral and sea surface) and smaller-scale land characteristics (land 

sea boundary, land cover, and topography), the BARPA-R model dynamically simulates f ine-scale 

structures based on its own physics. ERA-Interim and CMIP5 ACCESS1-0 (historical and RCP8.5 for 

future scenarios) are the two driving global models used to complete 1990-2015 and 1960-2099 

simulations, respectively. 

In these runs, changes in aerosol optical and cloud properties due to radiative forcing are included by 

prescribing monthly f ields of optical properties and cloud droplet number concentration. These f ields are 

generated by combining background aerosol climatology estimated from a pre-industrial forced lower-

resolution global atmosphere simulation with a prognostic aerosol scheme, with time-varying 

anthropogenic aerosol changes f rom the MACv2-SP (Max Planck Institute Aerosol Climatology v2; 

Stevens et al. 2016) and stratospheric volcanic forcing.  

In addition, a convection-allowing RCM, BARPA-C, was set up to be nested in the BARPA-R ERA-

Interim and ACCESS1-0 simulations. This is intended to help provide some insight around potential 

future changes in extremes, such as for extreme convective wind gusts. This additional downscaling 

was tested for the warm months during 1986-2005 and 2040-2059 at 4 km resolution in the tropics, and 

2 km in the midlatitude. 

The ERA-Interim forced BARPA-R simulation has been assessed against observational data for near-

surface temperature, vapour pressure and precipitation and BARRA-R regional reanalysis and ERA5 

global reanalysis, in a recent paper by Su et al. (2021). BARPA-R reduces biases in ERA-Interim for 

summertime maximum and minimum temperature and thus is able to ref lect more accurate diurnal 
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temperature ranges. For the winter months, BARPA-R also shows lower bias over the tropics, but for 

mid-latitude areas, BARPA-R shows biases that are characteristics of  BARRA-R. For precipitation, 

while more capable of  simulating more intense rain events than ERA-Interim, BARPA-R and BARRA-R 

both share the same biases in f requencies of  light and heavy rain days during the warm months. These 

can be attributed to the characteristics of  the common underlying model, which will be improved in 

future development. Nevertheless, BARPA-R can produce a realistic distribution of severe 

thunderstorm environments as compared with ERA-Interim. It simulated more cyclones than ERA-

Interim over the tropics, suggesting a potentially improved ability to represent smaller-scale tropical 

cyclones. 

 

Figure 1: Domains of the BARPA-R RCM model (solid boxes) with the Eastern region shown as the red box and the 

Western region indicated by the light blue box. Two additional BARPA-C domains are shown in dashed boxes. 

 

2.4 NARCliM v1.5 

The NSW/ACT Regional Climate Modelling (NARCliM) project version 1.5 was performed at the 

University of  New South Wales and the NSW Department of  Planning, Industry and Environment to 

extend the NARCliMv1 dataset (Evans et al., 2014). It uses the Weather Research and Forecasting 

(WRF) modelling system. Within WRF RCMs are formed by choosing the dynamical core and physics 

parameterisations to use. In NARCliM 36 possible models were tested for their performance and the 

independence of  model errors resulting in two WRF RCMs being chosen for NARCliMv1.5. These 

RCMs are driven at the lateral boundaries and sea surface by f ields from GCMs. For NARCliMv1.5 

three GCMs were chosen based on 4 criteria: the GCM performs adequately over Australia; they have 

independent model errors2; they span the future change space for temperature and precipitation in the 

full GCM ensemble; and they complement the GCMs already used in NARCliMv1. The NARCliMv1.5 

simulations have been evaluated along with the broader CORDEX-Australasia ensemble (Evans et al., 

2020). The domain that covers all of  Australia (CORDEX-Australasia) uses ~50km resolution. 

 

2 Errors here refers to temperature and precipitation errors across Australia when compared to 
AWAP. 
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Simulations were conducted from 1950-2100, for three GCMs under emission pathways RCP4.5 and 

RCP8.5. 

 

2.5 CCAM v1911 

The Conformal Cubic Atmospheric Model (CCAM) (McGregor 2005) is developed by CSIRO Oceans 

and Atmosphere along with collaborations with University of  Queensland, University of Tasmania and 

overseas contributors.  CCAM has a dif ferent approach to downscaling compared to the other RCMs 

described in this report, using a global stretched grid which has f iner resolution over a region of  interest, 

but without lateral boundary conditions. Technically CCAM is classif ied as a global stretched grid model 

(SGM) rather than a limited area RCM. Nevertheless, for convenience we will continue to use RCM as 

a general term for the dynamical downscaling models.  Since CCAM has no lateral edges, it instead 

relies on a spectral nudging approach to account for large-scale changes in climate predicted by the 

host GCM that CCAM is downscaling (Thatcher and McGregor 2009).  Basically, this means that CCAM 

will follow the host GCM for temperatures and winds at large spatial scales (e.g., 3,000km or roughly 

the size of  Australia) above 1.5km above the surface, as well as for surface pressure.  However, it is 

possible for rainfall to be different to the host GCM as, like all dynamical models, CCAM will simulate 

the rainfall according to its representation of  convection and cloud microphysics processes.  Surface 

temperatures over the ocean are interpolated f rom the host GCM but temperatures over land can 

change according to the predictions of the CABLE land-surface model included in CCAM. 

CCAM used a C288 grid with 35 vertical levels, focused to a resolution of 12km over Australia as 

shown in Figure 2.  The CCAM simulation included a representation of  aerosols based on 

anthropogenic emissions from CMIP5 and natural emission datasets  for the sulphur cycle, 

carbonaceous aerosols, dust and sea-salt.  The presence of  aerosols can impact radiation and rainfall 

in the simulation.  Simulations were conducted f rom 1980-2060, with some data extended to 2099, for 

f ive GCMs under emission pathways RCP4.5 and RCP8.5.  

 

Figure 2: CCAM 12km resolution grid over Australia used for the ESCI project.  Note that every 12th grid point is shown in 

two directions for clarity in the figure. 
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3. Data products from ESCI downscaling 

The ESCI project is providing a number of  datasets that are intended to assist the electricity sector with 

climate change projections.  Most climate datasets provide standard climate variables as recommended 

by CMIP5 for climate studies including daily maximum and minimum temperature, precipitation, surface 

energy f luxes, windspeed, variables describing solar radiation and clouds, land-surface data such as 

soil moisture and soil temperature.  In addition, we have developed some more specialised datasets 

which are targeted at the electricity sector.  A short description of these datasets developed for ESCI is 

provided below. 

 

3.1 Point location datasets 

An obstacle that prevents stakeholders using the climate projection datasets is the size and volume o f  

the data.  This can make it impractical and expensive for users to download.  There are multiple 

strategies to address this problem, with one being the use of  point location datasets.  These point 

locations are distributed around Australia to highlight locations of interest for the electricity transmission 

network.  They may represent transmission lines, demand centres, generation sites, and renewable 

energy sites.  These datasets are being made available through the ESCI web page and provide 30 min 

data for the variables listed in Table 2.  A map of  the various locations for point data is shown in Figure 

3. 

 

Name Units Description 

Clt % Cloud area cover as viewed f rom the surface 

Dni W m-2 Direct normal irradiance 

Ffdi none Forest f ire danger index (daily only) 

Ghi W m-2 Global horizontal irradiance (also called rsds in CMIP) 

Hurs % Relative humidity at near surface 

Pr kg m-2 s-1 Precipitation 

Ps Pa Surface pressure 

sfcWind m s-1 Wind speed at 10 m above surface 

Tdew K Dew point temperature 

tdry K Dry bulb temperature (also called tas in CMIP) 

Wind150 m s-1 Wind speed at 150 m above surface 

Wind250 m s-1 Wind speed at 250 m above surface 

Winddir m s-1 Wind direction at 10 m above surface 

Winddir150 deg Wind direction at 150 m above surface 

Winddir250 deg Wind direction at 250 m above surface 

Table 2: Description of typical variables available in 30 min intervals for the point locations 
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Figure 3: Map of point-location data provided by ESCI.  The key indicates the role of each location with a demand center 

indicated by a blue circle, hydro generation by orange triangles, solar generation by a green cross , thermal generators by 

a red box and wind generators by a purple triangle. 

 

A second version of  daily point location files are based on QME calibrated versions of the GCM and 

RCM datasets.  In this case, calibrated daily data are provided for daily maximum air temperature, daily 

minimum air temperature, daily precipitation and daily FFDI.   

 

3.2 Regional average datasets 

Users of  ESCI data may also prefer to use a regional average that is advantageous for capturing more 

representative changes over the region rather than relying on a single point to represent the changing 

climate.  For ESCI we have produced regional averaged datasets based on the CCiA cluster regions. 

These datasets are available in 30-min intervals for the same variables shown in Table 2 used for the 

point locations.  As for the point location datasets, daily versions of the regional averaged datasets are 

also provided for QME-calibrated GCM and RCM datasets.  
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3.3 Time-averaged national gridded datasets 

In cases where users require maps of  the climate projection datasets, we have created daily averaged 

and monthly averaged versions of  the data.  These datasets  vary in spatial resolution f rom 5km to 50 

km resolution depending on the data product.  Bias corrected data using QME are available at 5km 

resolution.  Uncorrected data f rom the BARPA and CCAM downscaled models are available at 12 km 

resolution.  The NARCliM v1.5 downscaling was not funded by ESCI and is available on the CORDEX 

grid at 50km resolution.  Data f rom each downscaling method are available for the NEM region, with 

some models also providing national coverage. 

 

3.4 Calibrated datasets using QME 

For some applications3, the presences of  climate model biases can undermine the ability to apply 

climate projections in risk assessments.  To this end we have also produced calibrated (i.e., bias 

corrected) versions of  the BARPA, NARCliM and CCAM datasets using the same QME method 

described in section 2.2 that was applied to calibrate CMIP5 GCMs.  Hence the dynamically 

downscaled datasets all used the same bias correction method when comparing results between the 

dif ferent regional climate projections.  This also means that the calibrated GCM and RCM data are all 

consistent with the observations-based data for the historical period, such as for individual parts of their 

histograms (i.e., occurrence f requency distributions) including for extremes.  Daily maximum 2m air 

temperature, minimum 2m air temperature and precipitation have been corrected based on AWAP.  

These datasets are then provided at 5km resolution consistent with the resolution of  AWAP.  

 

3.5 Climate extremes datasets 

In addition to providing climate projection datasets, the ESCI project has also created a number of  

derived datasets to provide information about changing climate hazards.  To provide information on 

extreme values f rom various climate datasets, we have produced Average Recurrence Interval (ARI) 

data for users.  The data were calculated with a Generalised Extreme Value L-moments approach for a 

series of  twenty-year time periods including 1986-2005, 1990-2009, 2000-2019, 2020-2039, 2040-2059, 

2060-2079 and 2080-2099.  The same approach was also applied to Australian Water Availability 

Project (AWAP, also known as Australian Gridded Climate Data, AGCD) gridded observed data 

provided by BoM, to be used to evaluate and benchmark the downscaling performance.  Each 

downscaling dataset for each GCM has been processed independently, allowing users to survey the 

range of  projections or combine the datasets as appropriate.  The data is provided for 1-in-2 year, 1-in-

5 year, 1-in-10 year and 1-in-20 year return periods for temperature, rainfall and f ire weather (using the 

FFDI), with annual and seasonal datasets. This was also applied for the projections of QME, BARPA, 

NARCliM v1.5 and CCAM.  The ESCI project considered changes in east coast lows (cyclones near 

midlatitude eastern Australia) following the method described by Murray and Simmonds (1991), and 

 

3 Applications that have a non-linear response can be particularly susceptible to biases.  Examples include modelling 
crop yields for agriculture, human health impacts and some hydrology applications.  
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Simmons and Murray (1991) (see also Pepler et al. 2015), while noting this was not a key focus 

identif ied by energy sector groups for this project.  Extreme wind gusts were a key focus of the project 

work, and utilised new methods developed in the project as detailed in Brown and Dowdy (2021).  

Further details regarding the projected changes due to hazards are discussed in the ESCI St andardised 

Method for Projections Likelihood (SMPL) report. 

 

3.6 Raw datasets 

Raw climate projection datasets in up to 30-min intervals and for 50 km to 12 km resolution are 

available on request.  We have assumed that users wishing to source these large datasets have the 

existing inf rastructure and data management skills to download and process such a large dataset.  In 

this case users can contact BoM or CSIRO directly and access the data through an account on the NCI 

supercomputer, and download the NARCliM1.5 data directly f rom the Earth System Grid Federation 

(ESGF) website as part of  the CORDEX-Australasia data. 

 

 

4. Model evaluation 

This section examines aspects of  the downscaling performance with respect to observations and with 

respect to the CMIP5 archive of  GCMs.  In some cases, the model evaluation is focused on Eastern 

Australia, noting a focus on this region for ESCI (i.e., provided to ESCI stakeholders for the NEM region 

in eastern Australia). 

 

4.1 Current climate: model evaluation 

Evaluation of  the current climate simulations is focused on measuring the dif ference between dif ferent 

downscaling techniques.  For many climate projection applications, the variables of  interest often 

include temperature and precipitation, including their biases compared with observations as shown in 

this section.  All biases were calculated for 1986-2005 which is the typical historical reference period for 

CMIP5 GCMs and are calculated with respect to the AWAP gridded analysis of observations.  We have 

not plotted the biases for QME as they are relatively small compared to the dynamical downscaling 

biases (i.e., QME application to model data results in a near-perfect match to historical data based on 

its quantile matching approach, including for extremes), which is a key feature leading to its suitability 

for producing application-ready data products.  Delta-scaling biases are directly related to the host 

dataset, which is currently based on CCAM. 

Figure 4 shows the bias for daily maximum temperature for BARPA, CCAM and NARCliM v1.5 as well 

as the bias for the host GCMs.  In NARCliM v1.5 the J and K model conf igurations use different 

physical parameterisations, we have plotted the biases for these two configurat ions separately.  We 

note that all the models tend to show a cold bias with respect to the AWAP gridded analysis of  

observations, although the bias does vary with location and between models.   Nevertheless, the biases 
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of  the downscaled models are quite consistent in magnitude with the biases associated with GCMs.  It 

is also clear that biases along the Australian alps are broadly similar for the GCMs, but can be reduced 

signif icantly by the downscaling approaches.  Biases in other regions can increase, such as for an 

increased cold bias with CCAM in northern Australia. 

 

 

 

Figure 4: Bias plots for daily maximum 2m air temperature over 1986-2005 between dynamical downscaling models 

BARPA, NARCliM and CCAM for the top, middle and bottom rows respectively.  Left column shows the average bias 

over the host CMIP5 host GCMs (different GCMs are used for each model as shown in Table 1) whereas the remaining 

middle and right columns show the RCM performance of the two model configurations in NARCliM v1.5 and a single 

version of CCAM and BARPA.  Biases are calculated with respect to AWAP observed gridded dataset from BoM. 

Figure 5 shows the biases for the daily minimum temperature for the dynamically downscaled models 

compared to the average bias for the host CMIP5 GCMs.  Again, biases can vary between location and 

RCM.  However, the strong warm bias in the daily minimum air temperature f rom the GCMs along the 

coastlines is much improved in the dynamically downscaled models on average.   The cause of  the cold 
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bias in minimum temperature is still being investigated, but is sometimes associated with a reduction in 

cloud cover or limitations with the land-surface model (i.e., heat stored in the soil). 

 

 

 

 

Figure 5: Same as Figure 4, but for daily minimum 2m air temperature with respect to AWAP observed gridded dataset 

from BoM.  The left column is the average results for the host GCMs and the middle and right columns are for the RCMs, 

including NARCliMs two model configurations.  The top, middle and bottom rows correspond to BARPA, NARCliM and 

CCAM respectively. 

Next, we compare the bias in daily precipitation between the host GCMs and the downscaled RCMs as 

shown in Figure 6.  Once more we f ind that the bias can change between locations and RCMs.  

Nevertheless, rainfall biases in the GCMs associated with the Australian alps and Tasmania are 

reduced in general (i.e., regions of  complex topography).   
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Figure 6: Same as for Figure 4,but showing the bias for daily precipitation with respect to AWAP observed dataset from 

BoM.  The left column is the average results for the host GCMs and the middle and right columns are for the RCMs, 

including NARCliMs two model configurations.  The top, middle and bottom rows correspond to BARPA, NARCliM and 

CCAM respectively. 

Simulation biases can also be broken down by season, although are not shown here in the interests  of  

providing a more succinct summary of  the model performance.  The downscaling models do change 

some of  the simulation biases, with the most noticeable example being a colder minimum temperature 

bias, whereas the GCMs typically showed a warm bias.  This can be partly due to the choice of  

downscaling method, but also related to the regional model’s land-surface, boundary layer turbulent 

mixing as well as representation of  cloud cover.  The RCMs do reduce biases on average when 

considering areas of  complex topography like the Australian alps or Tasmania.  It is also expected that 

precipitation biases may also improve when considering convection-scale simulations (e.g., less than 
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4km resolution) although these have not been investigated in this study. The issue arises due to the 

fact that small scale processes (e.g., convection) cannot be explicitly modelled in mesoscale (>  about 

12km) models such that sub-grid cloud and precipitation are estimated with simplif ied empirical 

relations. 

 

4.2 Current climate: representation of extremes 

An issue when representing extreme events in climate simulations is having suf f icient observations to 

provide a robust comparison.  Insuf ficient data or inappropriate treatment can lead to ‘noisy’ and 

possibly misleading results.  To this end we have calculated the Average Recurrence Interval (ARI) for 

1-in-5 year, 1-in-10 year and 1-in-20 year events.  The results are again compared to AWAP data, 

although care should be taken when comparing extreme rainfall for gridded data with observations at 

individual locations as AWAP data may underestimate extremes compared to a point measurement 

(King et al. 2013). 

Figure 7 shows the results f rom different downscaling methods for 1-in-5 year, 1-in-10 year and 1-in-20 

year daily maximum temperature, compared to observations based on AWAP af ter downscaling 

ACCESS1-0 across downscaling methods used in ESCI.  Note that the NARCliM results are based on 

50 km resolution data, the BARPA and CCAM results are based on 12 km resolution data and the 

observations are based on 5 km data.  The models do represent the extreme temperatures to an 

extent, with 12 km BARPA simulating the hottest temperatures and the 50 km NARCliM results 

simulating slightly lower temperatures.  It should be noted that of ten the extremes are evaluated at the 

model native resolution as this is considered a fairer test of  what the model can be expected to 

produce.  However, in this case we have evaluated the models with respect to the observed 5 km grid 

so as to clarify what extremes can be resolved in each dataset (i.e., f rom the user’s perspective).  

 

 

 



 

18 

 

 

Figure 7: Comparison of 1-in-5 year (top row), 1-in-10 year (middle row) and 1-in-20 year (bottom row) daily maximum 

temperatures for the different downscaling methods.  Observations based on AWAP are shown left column, with BARPA 

(2nd column), NARCliM J (3rd column), NARCliM K (4th column) and CCAM (5th column).  Note that NARCliM 

simulations are 50 km resolution whereas BARPA and CCAM are 12 km resolution. 

 

Figure 8 also compares the 1-in-5 year, 1-in-10 year and 1-in-20 year extreme daily maximum 

temperature with respect to the ACCESS1-0 GCM.  Comparing ACCESS1-0 GCM in Figure 8 with 

Figure 7 for the regional models, we note that the regional model improves the representation of  

extreme temperatures in some regions with respect to the GCM.  For example, eastern Australia has a 

cooler 1-in-20 year temperature in both the AWAP observations and RCM data compared to the GCM 

datasets.  There are also other locations like southern Tasmania where the GCM underestimates the 

extreme temperatures compared to the regional models. 

 

 

 

Figure 8: Comparison of 1-in-5 year (top row), 1-in-10 year (middle row) and 1-in20 year (bottom row) daily maximum 

temperatures with ACCESS1-0 GCM.  Observations based on AWAP are shown left column and ACCESS1-0 GCM is 

the right column.  The results can be compared to Figure 7. 
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Figure 9 describes the ability of  the downscaling to represent extreme daily rainfall.   The regional 

models tend to overestimate the extreme rainfall in northern Australia, with NARCliM-K being the 

lowest.  However, the regional models generally perform well over the eastern Australia coastline which 

has higher extreme rainfall compared to inland. 

 

 

 

Figure 9: Comparison of 1-in-5 year (top row), 1-in-10 year (middle row) and 1-in-20 year (bottom row) daily precipitation 

for the different downscaling methods.  Observations based on AWAP are shown left column, with BARPA (2nd column), 

NARCliM J (3rd column), NARCliM K (4th column) and CCAM (5th column).  Note that NARCliM simulations are 50 km 

resolution whereas BARPA and CCAM are 12 km resolution. 

 

We also compare the extreme rainfall f rom the regional models in Figure 9 with the extreme rainfall 

simulated by the host GCM in Figure 10.  The regional models tend to have a better representation of  

the extreme rainfall along coastal regions where the GCM underestimates the extreme rainfall (e.g., the 

eastern Australia coast).  There is also a tendency for the ACCESS1-0 GCM to underestimate the 

extreme rainfall for northern Queensland with 1-in-5 and 1-in-10 year extreme rainfall events, whereas 

regional models simulate higher extreme rainfall.  In some cases, a regional model can overestimate 

the extreme rainfall in northern Australia with respect to AWAP. 
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Figure 10: Comparison of 1-in-5 year (top row), 1-in-10 year (middle row) and 1-in-20 year (bottom row) daily 

precipitation for the ACCESS1-0 GCM.  Observations based on AWAP are shown left column and ACCESS1-0 GCM is 

the right column.  The results can be compared to Figure 9. 

 

Although regional models can better represent extremes in various locations, the results are further 

improved af ter applying QME calibration.    Once QME is applied the extreme temperatures and rainfall 

are in very close agreement with the AWAP observations.  An example is shown in Figures 10 and 11 

for BARPA corrected by QME. 
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Figure 10: Comparison of 1-in-5 year (top row), 1-in-10 year (middle row) and 1-in-20 year (bottom row) daily maximum 

temperatures for BARPA after QME has been applied.  First column shows AWAP, 2nd column shows uncalibrated 

BARPA, 3rd column shows calibrated BARPA-QME. 
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Figure 11: Comparison of 1-in-5 year (top row), 1-in-10 year (middle row) and 1-in-20 year (bottom row) daily 

precipitation for BARPA after QME has been applied.  First column shows AWAP, 2nd column shows uncalibrated 

BARPA, 3rd column shows calibrated BARPA-QME. 

 

4.3 Current climate: model anomalies correlated with NINO34 

A comparison between dif ferent regional models BARPA, NARCliM-K and CCAM is shown in Figures 

12 to 15, depicting the results of  a regression analysis with respect to 2m air temperature and 

precipitation with respect to the NINO34 index. The CCAM-ACCESS1-0 ACCESS1-0 anomalies in 

Figures 12 to 15 are broadly similar to those for CMIP5 ACCESS1-0. The CMIP5 models within the six-

member ensemble have contrasting NINO34 responses. In particular, the other f ive downscaled models 

by CCAM have a drier and warmer response to NINO34 in Sep-Oct-Nov. 

The anomalies in both rainfall and daily average 2m air temperature for the QME version of  CCAM-

ACCESS1-0 are very similar to those for the model output. Note also that  daily average temperature is 

estimated here as the average of  daily maximum temperature and daily minimum temperature.  
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Figure 12: Anomalies of 2m air temperature for a one standard deviation anomaly of the NINO34 index based on 

regression of seasonal means (as labelled) from years 1980-2019 for five types of data associated with ACCESS1-0: 

from top to bottom the ERA5 analysis, the CMIP5 model, CCAM, the QME of CCAM, BARPA, NARCliM-K and NARCliM-

J. Data off the coast are calculated for CQME but it represents only land (islands). Only every third grid point is used, 

aside from CMIP5. 
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Figure 13: As Figure 12, but for the south east, at full resolution. 

The BARPA and NARCliM anomalies are also shown in Figures 12 to 15. From their raw grids, BARPA 

has more detail than CCAM and NARCliM and this is evident in Fig ures 13 and 15.  NARCliM has been 

simulated at 50km resolution compared to BARPA and CCAM at 12km resolution. In the case of  

NARCliM there appears a little less similarity to the ACCESS1-0 results than there is for CCAM or 

BARPA, which may result f rom the downscaling technique. For instance, in Mar-Apr-May NARCliM has 

a mostly drier and warmer south east and interior of  Queensland, unlike the other four types.   In 

general, the two NARCliM results appear similar. Some dif ferences could arise by chance, f rom the 

sampling of  40 years in the simulation. Further simulations could be used to examine this, and indeed 

reduce uncertainty in all the results. 



 

25 

 

 

Figure 14: As Figure 12, but for precipitation. 
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Figure 15: As Figure 14, but for the south east, at full resolution. 

 

The anomalies for sea-level pressure are shown over the Australian domain in Figure 16. The 

anomalies in sea-level pressure are part of  the large-scale circulation changes associated with the 

ENSO represented in ACCESS1-0. The CCAM anomalies closely match those of  the CMIP5 model, 

probably due to the use of  spectral nudging with a 3,000km length scale. The BARPA f ields appear not 

as close, likely because of the lack of  constraint on sea-level pressure in the interior of  the domain. The 

NARCliM results are more dif ferent, especially in Dec-Jan-Feb. The larger negative rainfall anomalies in 
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the southeast f rom NARCliM appear related to the more extensive positive sea-level pressure 

anomalies. 

 

Figure 16. As Figure 12, but for sea-level pressure. Here the CCAM result is used for CQME. 

 

4.4 Current climate: Comparison of fields for summer 

Various statistics for the data over eastern Australia are given in Table 3, using ACCESS1-0 as a 

common host GCM between downscaled models.  The eastern Australian region is described in Figure 

17, along with sub-regions used later in this section.  The spatial mean AWAP summer temperature is 

slightly higher than f rom ERA5 (by 0.3°C).  This analysis also includes the M score described in 
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Watterson (2015), which shows the mean-squared error non-dimensionalised by the spatial variance of  

the f ield.  The M score is useful for providing greater dif ferentiation compared to correlation coefficients 

in cases where the f ield has a large spatial variation compared to its mean-squared error.   An M score 

of  0 indicates no skill, whereas an M score of  1000 describes the best possible score.  Negative M 

scores are rare in this context. Table 3 shows that the M score between ERA5 and AWAP is high, and 

the root-mean-squared dif ference is low. Removing the spatial mean to form anomaly f ields makes a 

change to the results -indicative of  greater similarity. The standard deviation (SD) appears small 

compared to the mean in each case. However, it is much larger than the bias in the mean of  a model, 

compared to AWAP. The improvement for anomaly f ields is higher in cases with larger mean bias. The 

M score for BARPA is higher than for CCAM, even for the anomaly f ields. While still a good score, that 

for CCAM-ACCESS1-0 is beaten by NARCliM-K-ACCESS1-0. Of  course, these runs are downscaling 

ACCESS1.0, rather than observations. Note that there is a consistency between the rankings of  models 

by M values and root-mean-squared values, as one would expect. 

 

 

Figure 17. Regions used for summer comparison in this section with red SEN, light blue SEE, orange SES.  The 

combination of all shaded regions indicates the  eastern Australia (AUE) region. The data is reduced to a 0.25° grid for 

plotting. 

  

 AWAP ERA5 CCAM-

ACCESS1-0 

NARCliM-K-

ACCESS1-0 

BARPA-

ACCESS1-0 

Mean, °C 27.6 27.3 26.6 25.8 27.4 

SD, °C 3.64 3.74 3.46 3.34 3.60 

M  882 753 639 882 

rmse, °C  0.68 1.40 2.08 0.67 

anom M  898 829 812 889 

anom rmse, 

°C 

 0.59 0.95 1.03 0.63 

Table 3. Statistics for climatological mean temperature in summer over region Eastern Australia. All fields are 

interpolated to the 0.25° grid . The statistics are firstly spatial mean and standard deviation (SD), then the M-skill 

score(M) and root mean square error (rmse), between with the field and AWAP, for the whole field, then for the anomaly 

field. 
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The statistics in Table 4 show the results for the climatological mean temperature for summer over 

Eastern Australia. CCAM has the highest mean of  all for ACCESS1-0 downscaling. BARPA-ACCESS1-

0 has the lowest mean, with NARCliM-K-ACCESS1-0 in between. BARPA-ACCESS1-0 also has a 

lower spatial SD, although it is still much larger than the bias in the mean. BARPA-ACCESS1-0 has the 

lowest M, even for the anomaly. The similarity between ERA5 and AWAP is easily the highest as they 

are both based on observations. 

 

 AWAP ERA5 CCAM-

ACCESS1-0 

NARCliM-K-

ACCESS1-0 

BARPA-

ACCESS1-0 

Mean, mm/d 2.81 2.76 3.23 2.73 2.40 

SD, mm/d 2.47 2.27 2.17 1.87 1.56 

M  876 673 635 601 

rmse, mm/d  0.46 1.12 1.19 1.28 

anom M  876 694 636 618 

Anom, rmse, 

mm/d 

 0.46 1.04 1.18 1.22 

Table 4. As Table 3, but for mean pr, with units of mm/d. 

Since ACCESS1-0 has been downscaled by three models, it is worth giving further details for these 

cases. Firstly, the downscaled f ields are compared with those f rom ACCESS1-0 itself  (both are 

interpolated to the 0.05° grid). The 4-season average M for each available variable over Eastern 

Australia is given in Table 5. It is notable that the CCAM sea-level pressure has a high M value; again, 

this conf irms the inf luence of  the driving surface level pressure f ields over land. BARPA is very similar 

to ACCESS1-0 for both sea-level pressure and air temperature, possibly because of the common UM 

atmospheric formulation. The very dif ferent resolutions likely explain the smaller M (larger dif ference) 

for precipitation. In general, the three models are providing some similarity in the base climate, but with 

their own characteristics.  

Model Air 

temperature 

Preciptation Sea-level 

pressure 

Average 

CCAM 642 452 879 658 

NARK 664 535 599 599 

NARJ 658 497 638 598 

BARPA 797 491 877 722 

Table 5. Scores for region Eastern Australia from both CCAM, NARCliM (NARK,J) and BARPA, showing the similarity to 

ACCESS1-0. The M scores are averaged over the four seasons, for each variable, then combined.  

The corresponding scores showing ‘skill’ relative to the observed data are given in Table 6. The air 

temperature score for BARPA-ACCESS1-0 is very impressive. The result for precipitation is only fair, 

consistent with the above analysis. Interestingly, both the CCAM-ACCESS1-0 and BARPA-ACCESS1-0 

values for air temperature and precipitation are higher than in Table 5. Possibly the reduced detail f rom 

ACCESS1-0 lowers those air temperature and precipitation scores. The variations in scores across the 

driver cases seem consistent with those across the CMIP5 models. As an example of  bias correction, 
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the QME version of  CCAM-ACCESS1-0 produces climatological fields very close to those of AWAP, 

with the average M scores close to 1000, although precipitation has some minor deviations.  None of  

the scores indicate a signif icant problem in any of  the data.  

  

CMIP5/ 

driver 

Model Air 

temperature 

Precipitation Sea-level 

pressure 

Average 

ACCESS1-0 CCAM 742 597 840 726 

ACCESS1-0 NARK 746 526 667 646 

ACCESS1-0 NARJ 748 595 702 682 

ACCESS1-0 BARPA 878 612 749 746 

ACCESS1-0 CCAM-QME 990 941    

Table 6. Skill scores for region Eastern Australia from both CCAM and NARCliM (NARK, NARJ). The M scores are 

averaged over the four seasons, for each variable, then combined.  

The overall M score (average for air temperature, precipitation, sea-level pressure) for each region and 

model is given by the average over the four seasons and three variables, following the method used for 

CCiA Fig. 5.2.2. The results are given in Table 7 with the regions shown in Figure 17. 
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CMIP5 AUE SES SEE SEN Av S,E,N 

ACCESS1-0 707 455 452 474 460.3 

CanESM2 656 406 407 441 418.0 

CNRM-CM5 687 498 393 485 458.7 

GFDL-

ESM2M 

599 268 370 366 334.7 

MIROC5 644 353 401 505 419.7 

NorESM1-M 601 315 414 369 366.0 

AVE 649.0 382.5 406.2 440.0 409.6 

 CCAM 12km AUE SES SEE SEN Av S, E, N 

ACCESS1-0 726 670 516 556 580.7 

CanESM2 665 569 429 548 515.3 

CNRM-CM5 706 657 551 535 581.0 

GFDL-

ESM2M 

616 519 389 404 437.3 

MIROC5 658 590 486 495 523.7 

NorESM1-M 715 613 563 522 566.0 

AVE 681.0 603.0 489.0 510.0 534.0 

 NARCliM AUE SES SEE SEN Av S, E, N 

NARCliM-K-

ACESS1-0 

646 563 364 410 445.7 

NARCliM-K-

CanESM2 

670 500 454 486 480.0 

NARCliM-K-

ACCESS1-3 

600 576 374 356 435.3 

NARCliM-J-

ACCESS1-0 

682 549 333 476 452.7 

 AUE SES SEE SEN Av S, E, N 

BARPA-

ACCESS1-0 

746 698 596 579 624.4 

Table 7. Skill score M averaged over the three variables air temperature, precipitation and sea-level pressure. Values are 

given for the four regions and each model. Top table, CMIP5, 2nd table for CCAM from the 12km grid, 3rd table as 

NARCliM 50km and 4th table is for BARPA. Also given is the average over six model results in each case, and the 

average of the S, E and N results (at right). The models are ACCESS1-0, GFDL-ESM2M, CNRM-CM5, CanESM2, 

NorESM1-M, and MIROC5.  Regions are shown in Figure 17. 
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The improvement of  CCAM, over CMIP5, is evidently due to the simulation of  detail in the precipitation 

f ields. It indicates an ‘added value’ of  CCAM. CCAM does produce on average higher rainfall and lower 

temperatures than the driver models. However, the reduced rainfall for the ERA5 case (not shown) 

suggests that tuning a downscaling model to produce a more realistic mean rainfall is not a simple 

process. The NARCliM-K M scores are lower for 6 of  the 8 common cases. This may be partly due to 

the lower resolution of  NARCliM, and hence smaller spatial variation, especially in the smaller regions. 

NARCLiM-J gives slightly better scores for ACCESS1-0. BARPA is better again, providing considerable 

‘added value’. 

Further assessment is warranted, but f rom these results all the ESCI datasets considered here appear 

credible as representations of  the basic climate f rom the recent past. Nevertheless, the relative 

coolness of the CCAM simulations for the recent past suggests that using the QME version of  the air 

temperature values, in particular, may be worthwhile, for some applications. 

 

4.5 Projected change: representing the range of possibilities from CMIP5 models 

Another consideration when evaluating downscaling of  GCMs with RCMs is how well the downscaled 

change in climate represents the full range of  possibilities simulated by the different CMIP5 GCMs (this 

is also quantif ied by PAV discussed in the next section).  For this comparison we will sample a few 

downscaled GCMs for different methods and compare the change in climate for 2040-2059 relative to 

1986-2005 under the RCP8.5 emission pathway. 

Figure 18 shows the results for BARPA af ter downscaling ACCESS1-0.  In general, the change in both 

daily maximum and daily minimum temperature is reasonably similar to that projected by the host GCM.  

We note that in this case BARPA and ACCESS1-0 share a common land-surface model, atmospheric 

physics and other components.  Nevertheless, we are conf ident that BARPA is performing well at 

representing the changes projected by ACCESS, but with enhanced regional features.  This is 

particularly noticeable where the change in projected rainfall for 2040-2059 relative to 1986-2005 

(RCP8.5) clearly shows changes due to the improved resolution, such as enhancements for coastal 

regions and areas of  complex topography like the Australian alps.  Nevertheless, the broad changes in 

rainfall are still somewhat consistent with the host GCM. 
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Figure 18: BARPA daily maximum temperature change (left column), daily minimum temperature change (middle 

column) and precipitation change (right column) for 2040-2059 relative to 1986-2005 for the RCP8.5 emission pathway.  

Top row is GCM change and bottom row is BARPA change.  One GCM is considered being ACCESS1-0. 

Figures 19 to 21 show a comparison of the projected change in daily maximum air temperature, daily 

minimum air temperature and precipitation for NARCliM v1.5 for 2040-2059 relative to 1986-2005 under 

the RCP8.5 emission pathway.  In this comparison there are the GCM (top row), NARCliM J 

conf iguration (middle row) and NARCliM K conf iguration (bottom row).  The three GCMs considered are 

ACCESS1-0 (lef t column), ACCESS1-3 (middle column) and CanESM2 (right column).  We note that 

the NARCliM v1.5 results shown here are f rom the 50km resolution CORDEX Australasia domain.  The 

results indicate that the choice of  NARCliM v1.5 conf iguration can impact on the change signal .  For 

example, the NARClIM J conf iguration somewhat resembles the amount of  warming shown in the host 

GCM, whereas NARCliM K conf iguration shows more warming af ter downscaling ACCESS1-0 than 

when downscaling CanESM2 for Western Australia.  Dynamical downscaling techniques can alter the 

projected change in climate as they have their own representation of  atmosphere physical processes 

and dynamical behaviour.  In some cases, the RCMs add value through their ability to respond to local 

topographical features or improved resolution of atmospheric processes.   
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Figure 19:  NARCliM v1.5 daily maximum temperature change for 2040-2059 relative to 1986-2005 for the RCP8.5 

emission pathway.  Top row is GCM change, the middle row is the NARCliM-J change and bottom row is NARCliM-K 

change.  Three GCMs are considered being ACCESS1-0 (1st column), ACCESS1-3 (2nd column) and CanESM2 (3rd 

column). 
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Figure 20:  NARCliM v1.5 daily minimum temperature change for 2040-2059 relative to 1986-2005 for the RCP8.5 

emission pathway.  Top row is GCM change, the middle row is the NARCliM-J change and bottom row is NARCliM-K 

change.  Three GCMs are considered being ACCESS1-0 (1st column), ACCESS1-3 (2nd column) and CanESM2 (3rd 

column). 

The projected change in precipitation f rom NARCliM v1.5 is shown in Figure 19, relative to the host 

GCMs.  For ACCESS1-3 (middle column) and CanESM2 (right column) the changes in precipitation are 

comparable to the host GCMs, although with some regional dif ferences.  In the case of  NARCliM 

downscaling ACCESS1-0 (lef t column), there is a tendency to show an increased amount of  drying for 

the eastern side of  Australia. 
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Figure 21:  NARCliM v1.5 daily precipitation change for 2040-2059 relative to 1986-2005 for the RCP8.5 emission 

pathway.  Top row is GCM change, the middle row is the NARCliM-J change and bottom row is NARCliM-K change.  

Three GCMs are considered being ACCESS1-0 (1st column), ACCESS1-3 (2nd column) and CanESM2 (3rd column). 

Figures 22 to 24 show the projected changes f rom the CCAM downscaling for 2040-2059 relative to 

1986-2005 under the RCP8.5 emission pathway.  We have plotted f ive examples of CCAM downscaled 

GCMs, with CCAM-NorESM1-M as a medium case model (1st column), CCAM-MIROC5 as a low 

warming model (2nd column), CCAM-ACCESS1-0 as a medium warming model (3rd column), then with 

CCAM-GFDL-ESM2M as a higher warming model (4th column) and CCAM-CanESM2 as a high 

warming model (5th column).  For the daily maximum temperature, CCAM can be seen to produce a 

change signal that is relatively similar to the host GCM, although the amount of  warming is slightly 

lower than that projected by the host GCM.  However, in the case of  daily minimum temperatures in 

Figure 23, we notice that three out of  the four downscaled GCMs in this f igure show a consistent 

increase in minimum temperature with the host GCM, with CCAM-GFDL-ESM2M showing an 

alternative result where the minimum temperature changes by a much smaller amount.  Since we have 

two examples of  high warming with CCAM-GFDL-ESM2M and CCAM-CanESM2, we note that the 

reduced amount of  warming for the minimum temperature is somewhat specif ic to GFDL-ESM2M and is 

not the case in general as shown by CCAM-CanESM2 with a much higher increase in daily minimum 

temperature.  This dif ference in CCAM-GFDL-ESM2M from the host GCM is likely to be related to 

changes in cloud cover and is currently being investigated.  
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Figure 22: CCAM daily maximum temperature change for 2040-2059 relative to 1986-2005 for the RCP8.5 emission 

pathway.  Top row is GCM change and bottom row is CCAM change.  Five GCMs are considered being NorESM1-M (1st 

column), MIROC5 (2nd column) and ACCESS1-0 (3rd column), GFDL-ESM2M (4th column) and CanESM2M (5th 

column). 

 

 

 

Figure 23: CCAM daily minimum temperature change for 2040-2059 relative to 1986-2005 for the RCP8.5 emission 

pathway.  Top row is GCM change and bottom row is CCAM change.  Five GCMs are considered being NorESM1-M (1st 

column), MIROC5 (2nd column) and ACCESS1-0 (3rd column), GFDL-ESM2M (4th column) and CanESM2 (5th column). 

In Figure 24 we compare the changes in precipitation between the GCMs and the CCAM downscaled 

simulations.  As was the case for BARPA, we notice a number of  local enhancements to the change in 

rainfall, particularly along coastlines and for areas of  complex topography  such as the Australian alps.  

Also, like BARPA, CCAM is broadly consistent with the host GCM despite using a single cloud 

microphysics parameterisation compared to each GCM using a dif ferent parameterisation for clouds.   

We are therefore conf ident that CCAM is generally consistent with the host GCM, although it can 

change the projection as was demonstrated for the GFDL-ESM2M GCM. 
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Figure 24: CCAM precipitation change for 2040-2059 relative to 1986-2005 for the RCP8.5 emission pathway.  Top row 

is GCM change and bottom row is CCAM change.  Five GCMs are considered being NorESM1-M (1st column), MIROC5 

(2nd column) and ACCESS1-0 (3rd column), GFDL-ESM2M (4th column) and CanESM2 (5th column). 

 

4.6 Projected changes: Realised added value 

A tool for quantifying the benef it of performing downscaling is realised added value (RAV) (Di Virgilio et 

al 2020).  This analysis is based on three quantities, known as added value (AV), potential added value 

(PAV) and f inally realised added value (RAV).  AV describes how an RCM improves on its host model’s 

simulated climate for a historical period when compared to observations  (i.e., higher AV is better).  PAV 

quantif ies how an RCM modif ies the projected changes with respect to the host model. PAV of zero 

indicates that the RCM projects the same future change as the GCM, while a non-zero PAV indicates 

that the RCM projected change dif fers from the GCM projected  change in the direction indicated. 

Finally, AV and PAV are used to show RAV as an overall summary of  the value added by the RCM. 

Hence, high (positive) RAV indicates that the RCM improves the historical simulation (positive AV) and 

that the RCM projection differs f rom the GCM projection (PAV is non-zero).  Negative regions of  AV, 

PAV and RAV are possible (blue regions in Figures 25 to 30).  For example, negative AV tends to 

indicate that the host GCM was already very similar to gridded observation data.   Note that a negative 

PAV can also be a positive contribution to RAV, but differ in terms of  the sign or size of  the projected 

change. 

Below in Figures 25 to 30, we show the basic RAV for the three dynamical downscaling models used in 

ESCI being BARPA, NARCliM and CCAM with respect to temperature and precipitation means as well 

as extremes.  In all cases, downscaling of ACCESS1-0 was used as it was the GCM that was 

downscaled by all three models.  Starting with daily maximum 2m air temperature and extreme dai ly 

maximum temperature (represented by the 99th percentile over a 20-year period) for 1986-2005 shown 

in Figures 25 and 28, we note that the downscaling has a mix of  locations for both positive and negative 

RAV.  In the lef t column we can see some regions which clearly contribute to positive AV with respect 

to historical observations relative to the host GCM, as well as regions which perform less well ref lecting 

the widespread cold bias shown in Figure 4.  The extreme 99th percentile for daily maximum 

temperature tends to show the dynamically downscaling RCMs having more positive AV than the 

average daily maximum temperature, suggesting RCM results may be more useful for extreme 

temperatures than the average temperature.  The middle column indicates whether the RCM provided a 
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dif ferent change in the future regional climate for 2080-2099 relative to 1986-2005.  We note that 

BARPA in particular provides a high positive PAV, projecting higher temperature increases than the 

driving GCM.  NARCliM-J and CCAM tend to project lower temperature increases than the driving GCM 

for most regions.  The AV and PAV are then combined into RAV on the right column.  There is a 

tendency for the RCMs to add positive RAV along coastal and tropical regions being areas that GCMs 

f ind difficult to adequately resolve.  There is a tendency to show positive RAV f rom downscaling for the 

extreme maximum temperature, although this can vary between dif ferent downscaling models.  

Nevertheless, the results illustrate some of  the advantages of using a multi-model approach. 

 

 

 

 

Figure 25: Plots of the added value (left column), potential added value (middle column) and realized added value (right 

column) for BARPA (top row), NARCliM-J (middle row) and CCAM (bottom row) with respect to average daily maximum 

2m air temperature after downscaling ACCESS1-0 for 2080-2099 relative to 1986-2005. 
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Figure 26: Same as for figure 24, but for the 99th percentile of daily maximum temperature as an indication of an extreme 

daily maximum temperature after downscaling ACCESS1-0 for 2080-2099 relative to 1986-2005.  Columns denote 

added value (left), potential added value (middle) and realized added value ( right).  Rows show BARPA (top), NARCliM-J 

(middle) and CCAM (bottom). 

In the case of  minimum daily 2m air temperature (f igures 27 and 28) we note that on average the RCMs 

do a better job of  increased realised added value to the mean daily minimum temperature compared to 

the maximum temperature described in f igures 26 and 26.  There is also a much larger area where the 

RCMs add value with the downscaling of extreme minimum temperatures compared to extreme daily 

maximum temperatures. 
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Figure 27: Same as figure 25, but for average daily minimum temperature after downscaling ACCESS1-0 for 2080-2099 

relative to 1986-2005.  Columns denote added value (left), potential added value (middle) and realized added value 

(right).  Rows show BARPA (top), NARCiM-J (middle) and CCAM (bottom). 

 

 

 

Figure 28: Same as figure 25, but for 1st percentile daily minimum temperature as a representation of extreme cold 

temperatures after downscaling ACCESS1-0 for 2080-2099 relative to 1986-2005.  Columns denote added value (left), 

potential added value (middle) and realized added value (right).  Rows show BARPA (top), NARCliM-J (middle) and 

CCAM (bottom). 
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Finally, in Figures 29 and 30 we consider added value for precipitation.  The RAV for mean rainfall is 

somewhat varied between the downscaled models, although certainly with examples of  clear positive 

RAV.  Again, the RAV for the extreme daily precipitation appears to be more positive than for the 

average precipitation, once more suggesting that the downscaling is adding mo re value for the extreme 

weather than for the average weather.  There is also a tendency to improve precipitation in the tropics, 

coastal regions and regions of  complex topography. 

 

 

 

Figure 29: Same as figure 25, but for average daily precipitation after downscaling ACCESS1-0 for 2080-2099 relative to 

1986-2005.  Columns denote added value (left), potential added value (middle) and realized added value (right).  Rows 

show BARPA (top), NARCiM-J (middle) and CCAM (bottom). 
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Figure 30: Same as figure 25, but for 99th percentile of daily precipitation as a representation of extreme rainfall after 

downscaling ACCESS1-0 for 2080-2099 relative to 1986-2005.  Columns denote added value (left), potential added 

value (middle) and realized added value (right).  Rows show BARPA (top), NARCliM-J (middle) and CCAM (bottom). 

A useful summary of  the RAV is shown in f igure 31 between BARPA, NARCliM-J and CCAM with 

respect to correlation.  From this f igure it is clear that generally regions of  complex  topography have 

more RAV due to downscaling, coastal regions in the middle and f lat regions with the least RAV.  The 

situation can be dif ferent when focusing on extreme temperatures and rainfall which improve over 

larger areas.  Importantly the best performance for different seasons and different levels of  extremes 

can vary between RCMs, thereby demonstrating the value of  a multi-model approach. 

 

 

Figure 31: Summary of realized added value for temperature and precipitation in terms of correlation with observations 

after downscaling from ACCESS1-0.  The plots represent BARPA (left), NARCiM-J (middle) and CCAM (right). 
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It is important to note that applying QME to the downscaling results can signif icantly improve their RAV.  

PAV for the RCMs with QME calibration applied can be compared to PAV for the GCMs with QME 

applied, with QME improving AV in both cases (due to its quantile matching basis), but showing 

improvements in PAV for the RCM calibrated data over the GCM calibrated data. Examples are shown 

in f igures 32 to 34, which describe AV, PAV and RAV af ter QME calibration has been applied to the 

ACCESS1-0 GCM as well as the regional models for average daily maximum, average daily minimum 

and average daily rainfall, respectively.  Af ter QME calibration has been applied, the added value is 

considerably more positive across Australia.  Note that more value is added when using RCM-QME 

than the GCM-QME applied for ACCESS1-0, due to the improvement in PAV.  Essentially the PAV for 

the ACCESS1-0 GCM is close to zero, whereas the PAV for the regional models is strongly non-zero 

for the regional models (indicating a dif ference in the projected change).  
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Figure 32:  Realized added value for daily maximum temperatures after QME calibration is applied to GCMs and RCMs 

for ACCESS1-0.  Left column is added value, middle column shows potential added value and the right column shows 

realized added value.  Top row is for ACCESS1-0 GCM, 2nd row is for BARPA-ACCESS1-0, 3rd row shows NARCliM-J-

ACCESS1-0, 4th row shows NARCliM-K-ACCESS1-0 and 5th row shows CCAM-ACCESS1-0.  All results are for 2080-

2099 with respect to 1986-2005 and under the RCP8.5 emission scenario. 
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Figure 33: Realized added value for daily minimum temperatures after QME calibration is applied to GCMs and RCMs for 

ACCESS1-0.  Left column is added value, middle column shows potential added value and the right column shows 

realized added value.  Top row is for ACCESS1-0 GCM, 2nd row is for BARPA-ACCESS1-0, 3rd row shows NARCliM-J-

ACCESS1-0, 4th row shows NARCliM-K-ACCESS1-0 and 5th row shows CCAM-ACCESS1-0.  All results are for 2080-

2099 with respect to 1986-2005 and under the RCP8.5 emission scenario. 
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Figure 34: Realized added value for daily rainfall after QME calibration is applied to GCMs and RCMs for ACCESS1-0.  

Left column is added value, middle column shows potential added value and the right column shows realized added 

value.  Top row is for ACCESS1-0 GCM, 2nd row is for BARPA-ACCESS1-0, 3rd row shows NARCliM-J-ACCESS1-0, 

4th row shows NARCliM-K-ACCESS1-0 and 5th row shows CCAM-ACCESS1-0.  All results are for 2080-2099 with 

respect to 1986-2005 and under the RCP8.5 emission scenario. 

 

 

5. Conclusions 

This report describes the downscaling of  global climate projections to regional scales for the purposes 

of  ESCI and stakeholders in the electricity sector.  These climate datasets are intended to assist with 

stakeholders quantifying climate-related risks posed by global warming.  Although we intend for these 

datasets to be useful for a broad range of  users, we note that they can be considered to support 
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existing climate datasets that may have already been in use in the sector (e.g., data f rom Climate 

Change in Australia).  The use of  these downscaled datasets provides additional information and 

scenarios that could be used for a range of  risk assessments. 

Although this document is intended as a technical reference for the various downscaled datasets, we 

note that the science is continually improving as we gather further lines of  evidence.  Hence the results 

of  this work will continue to be updated into the future.  For example, BARPA was intended for ESCI to 

cover eastern Australia using RCP8.5, and building on the successful delivery of that a new project is 

currently running BARPA for western Australia and RCP4.5 to enable national coverage for two 

emissions pathways (contact Bureau of  Meteorology for further details as required).  The information in 

this report is designed to help with understanding some of  the advantages and disadvantages of 

dif ferent downscaling techniques, noting that there is no case where one method consistently provides 

superior results compared to the other methods.  Therefore, it is generally recommended to consider a 

broad range of  model data and other lines of  evidence (e.g., observations data can provide insight on 

extremes and climate change trends).  Further details on lines of  evidence for extremes are available in 

the SMPL Technical Report, as well as details on model choice and recommendations in the range of  

less technical guidance material produced by the ESCI project for more practical energy sector 

applications. 

Tools such as Realised Added Value (RAV) can be useful for comparing the techniques including 

assessment of  biases in relation to observations for the historical period, as well as how downscaling 

can modify the future projections from coarser-scale GCM output. 

The report also provides an analysis of  extreme events based on average recurrence interval, as well 

as some derived datasets that represent various hazards (e.g., including bushf ire weather conditions).  

These hazard datasets can be either used directly by the stakeholders or as a secondary check on 

independent hazard modelling. 

RCMs do not automatically f ix all problems with climate simulations .  Calibration methods are generally 

recommended to be applied to RCM (and to GCM) projections in this project.  For example,  NARCLiM 

and CCAM show a cold bias in their simulations, which the calibrated method then accounts for.  This 

also helps the data to be more readily applicable in user applications. RCMs also show some extremes 

that are too wet in parts of  northern Australia and along coastlines (noting that AWAP may be 

underestimating extremes in some regions).  Nevertheless, RCMs generally improve on the GCMs 

which struggle to represent the extreme rainfall.  Realised Added Value is not uniformly positive when 

simply downscaling.  However, when combining downscaling with bias correction like QME, we f ind a 

general improvement in the simulated climate. 

The computing resources required for downscaling constrain the ensemble size to be somewhat 

smaller than is the case for GCMs.  This is also a ref lection that an individual country does not have the 

same resources as a multi-nation intercomparison experiment.  In this way the regional climate 

simulations will not perfectly represent the full range of  the CMIP5 ensemble of  climate simulations.  

Nevertheless, ef fort was made to downscale GCMs recommended by CCiA so as to have the best 

chance of  representing low, mid and high changes in temperatures and rainfall.  Since regional models 

have their own physical parameterisations, they can disagree with the host global climate model, 

particularly with respect to changes in rainfall (a highly complex and non-linear process dependent on 

many physical drivers over a range of  spatio -temporal scales).  We also note that when global climate 

models are simulated at dif ferent resolutions, the same model can also produce different projections for 

rainfall and temperature, so it is not entirely unexpected that regional models respond differently to the 
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host GCMs.  It is also a complex task to break down the reasons for different projections without 

running a number of  new downscaling experiments designed to isolate the impact of various factors 

(e.g., turning on or of f aerosols, or running dif ferent physical parameterisations  as was done for 

NARCliM). 

The work represented in this report is one of  the larger regional downscaling intercomparisons 

undertaken for Australia, along with the CORDEX Australasia intercomparison experiment.   Combined 

with the GCM projections already undertaken as part of  Climate Change in Australia, and the 

standardised method f or projections likelihood (SMPL) these datasets can assist the electricity sector in 

assessing and adapting to climate-related risks now and into the future years. 
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