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Abstract The influence of anthropogenic climate change on extreme temperatures, winds and 

bushfire weather in Australia is assessed here. These assessments consider a comprehensive 
range of factors including based on observations, modelling and physical process 
understanding. Those factors are reviewed using a standardised method to collate lines of 

evidence for guiding the production of projections information and confidence assessment. 
Projections are produced using calibrated data from global and regional climate models for 
temperature and fire weather, with environmental diagnostics used for severe convective winds 
from thunderstorms. Projections include maps throughout Australia corresponding to the 10-

year average recurrence interval (ARI) which is more extreme than previously presented for 
fire weather and severe wind projections, such that care taken to document and communicate 
uncertainties, supported by the comprehensive reviews and lines of evidence. A focus of the 
discussion is on southern and eastern Australia during summer, due to a need for this in energy 

sector risk assessments, but with these nationally consistent projections intended to be used 
more broadly for other purposes too. The results for 10-year ARI values in southern and eastern 
Australia during summer show increases for temperature (Very High Confidence), severe winds 
(Low Confidence) and bushfire weather (High Confidence in southern Australia; Medium 

Confidence in eastern Australia) due to increasing greenhouse gas emissions. 

  



  

1. Introduction and overview 

This document presents climate projections for extremes based on applying a 
standardised method designed to provide enhanced information on the likelihood of projected 
changes. The method considers a comprehensive range of  lines of evidence, including from 
observations, reanalyses, modelling and physical process understanding. It is intended to help 

provide guidance around future changes in extremes, given that considering many lines of 
evidence can be helpful for this, including due to the range of uncertainties that often exist 
around projected future changes in extremes. This method is used here together with a new set 
of calibrated climate projections data produced for Australia, based on several regional 

modelling approaches for dynamical downscaling. 

The method (referred to here as the standardised method for projections likelihood, 

SMPL) can be applied for an individual weather variable and region, or for a 
multivariate/compound event (e.g., relating to bushfire risk factors based on considering a 
range of different processes). A previous study provides examples of how this type of method 
can be applied for one weather variable (mean rainfall) in four individual seasons (Dowdy et 

al. 2015). The method is applied here for the following three variables with a focus on summer 
(December to February), selected based on discussions with stakeholders on key needs for the 
energy sector (noting the support for this research through the Energy Sector Climate 
Information, ESCI, project): 

o extreme temperature, based on daily maximum air temperature at a height of 2 m 
(Section 3) 

o extreme wind, based on 3 second average wind gust speed at a height of 10 m (Section 
4) 

o extreme bushfire weather, based on a compound event type of framework to consider a 
range of different risk factors (Section 5) 

For some planning and design activities relating to future climate change, decisions will 
often need to be made regardless of whether highly confident projections are available or not. 

Consequently, there may be benefits in scientists providing information on projections even if 
those projections are not highly confident, as can be the case for some extreme events, as long 
as the degree of uncertainty is assessed and communicated when those projections are 
provided. The projections of extremes presented here are intended to help underpin such 

decisions, based on considering a broad range of lines of evidence. 

The examination of various lines of evidence is intended to help guide the selection of 

data and methods for providing projections to end users, as well as to help produce confidence 
assessment information to accompany the provision of  those projections. For example, 
examining the lines of evidence for a specific purpose (e.g., projections of extremes for energy 
sector needs in southeast Australia) can help provide guidance when producing the projections 

on whether a particular modelling approach could be useful to include or not (or perhaps 
weighted differently within a broader ensemble of datasets). That type of targeted guidance can 
be used together with other more general sources of guidance relevant to projections data 
selection, such as based on broader assessments of models and methods relating to climate 

change projections such as presented by CSIRO & BoM (2015) as well as in the ESCI project 
technical report on modelling and downscaling (Thatcher et al. 2021). 

The lines of evidence are also intended for use when producing confidence assessment 
information in the projections. The confidence assessment information can include measures 
such as ranges of change (e.g., probabilistic estimates of likely ranges that may be above, or 



  

below, the most likely estimate for the projected change) and other approaches such as 
descriptive terms for communicating the degree of confidence (e.g., words with quantitative 
probabilities associated with them such as those used for IPCC (Mastrandrea et al. 2011)). 

For information on the likelihood of projected future changes in these weather-related 
variables, stakeholder feedback recommended a focus on extremes corresponding to the 10-

year average recurrence interval (ARI), representing an event with a return period of 10 years 
on average (noting that the return period is equal to the reciprocal of the annual probability of 
exceedance). Maps of the most likely future projected change in values corresponding to the 
10-year ARI were requested by stakeholders for these weather-related variables, together with 

estimates of the 10th and 90th percentile range of plausible values as a confidence assessment 
measure. Maps of those quantities are presented in later parts of this report, based on 
considering various lines of evidence. The resultant maps (and data layer for each of those 
maps) are intended for use such as by risk analysts in the energy sector as well as for a broader 

range of user groups including in other sectors. The lines of evidence are not intended to be of 
direct use by risk analysts but are provided to document the method used and the supporting 
science details. 

The following Section 2 describes the steps for applying the method, then provides 
some examples of practical uses of the outputs for improved resilience to climate hazards. 
Sections 3-5 document the application of the method for extreme temperatures, winds and fire 

weather, respectively. The outputs from the application of this method include national maps 
and data files of 10-yr ARI values (available on request), with supporting review summaries 
and confidence information.  

  



  

2. Description of method and implementation of results 

2.1 Steps used to apply the method 

Applying the method consists of two steps, referred to here as producing the Lines of 
Evidence Table (Step 1) and then producing the Projections Likelihood Information (Step 2). 
The method is applied individually for each variable of interest (e.g., extreme temperature, 

extreme wind and extreme fire weather are the three variables considered here). For this study, 
the Projections Likelihood Information includes maps showing the most probable change in 
values corresponding to the 10-year ARI, together with estimates of the 10 th and 90th percentile 
range of plausible change. 

Step 1 – Produce the Lines of Evidence Table 

➢ Collect a wide range of information on climate change that could be of relevance to 
consider when populating the Lines of Evidence Table. This information could be obtained 
from new analyses as well as from a review of existing literature. The information could 

consider aspects such as observations, reanalyses, model data and physical process 
understanding. For example, relevant information could potentially include analysis of 
long-term observed trends, model simulations of future climate, uncertainties in 
observations, uncertainties relating to a modelling approach’s ability to simulate physical 

processes and observed features (such as the seasonal cycle or spatial detail of extremes), 
as well as the influence of large-scale drivers (e.g., ENSO, IOD and SAM) in the historical 
and future projected climates. 

➢ Collate that information into short text summaries on different topics, with accompanying 
figures and references provided to support these summaries, aiming for a general balance 
of evidence based on the available science. The summaries can be grouped into broader 

categories: e.g., physical processes, historical information and projected changes (as also 
used for the broad sections of the Lines of Evidence Table). 

➢ Use those short text summaries to populate the Lines of Evidence Table. This table contains 
a different row for each of the different aspects being considered (e.g., observed trends 
could be on one row of the table, with modelled trends on another row of the table), with 
examples of these tables provided in Section 3-5 as well as in a previous application for 

rainfall in eastern Australia (Dowdy et al. 2015). For each aspect being considered, the 
collected information is used to provide two key details: the degree of influence that this 
aspect has on the variable in the region being considered; and what this implies for the 
direction of projected future change (either an increase, decrease, little change or increased 

uncertainty). This is intended as a standardised way to synthesise a broad range of 
information for this method. 

Step 2 – Produce the Projections Likelihood Information 

➢ For the projected change of interest (e.g., here we consider the change from the historical 

period to a future period in values corresponding to the 10-year ARI), use the Lines of 
Evidence Table to determine the best available data and methods for estimating a given 
likelihood measure. For example, here we aim to produce the most probable projected 
change, together with estimates of the 10th and 90th percentile range of plausible change. 

The method to determine the best available estimate for a given likelihood measure may 
vary between different weather variables of interest (e.g., depending on the degree of 
confidence in models to simulate relevant physical processes). For example, this variation 
could include the selection of different datasets and methods (e.g., the use of direct model 



  

output or statistical diagnostic methods) or scaling some data differently in a model 
ensemble. 

➢ For quantities that have a reasonably robust range of evidence, with good agreement 
between those different lines of evidence (e.g., about two thirds of the Lines of Evidence 
Table having a consistent sign of future change), then model output may be the best option 

for producing the Projections Likelihood Information, while still considering the various 
uncertainties and strengths/weaknesses of different modelling approaches for helping to 
guide the production of the data products. For quantities with lower confidence (i.e., limited 
evidence and/or low agreement between lines of evidence), then a more qualitative best 

estimate could be appropriate. For example, in some cases with very high uncertainty the 
best estimate for the Projections Likelihood Information might simply be ‘an increase is 
more likely than a decrease’ for a particular region, if that is the best information that can 
be provided based on the balance of available knowledge from the Lines of Evidence Table. 

It is acknowledged that given the broad range of different information sources and data 
types (e.g., direct model output or statistical diagnostic methods) this step of the process 
may require some degree of expert judgement to be used. 

➢ The Projection Likelihood Information can include confidence assessment information, 
such as based on the degree of evidence and agreement from the Lines of Evidence table. 
Here we use the estimates of the 10 th and 90th percentile range of plausible change for 

indicating the degree of confidence in the projected future changes as well as noting other 
approaches that can be used for some applications, including the framework shown in Table 
2.1 together with words that have quantitative probabilities associated with them to 
accompany the provision of projections. 

Additional details on the method 

In addition to maps for 10-year ARI values, which is the focus of the application 

examples presented here, it is possible to produce the Projections Likelihood Information for 
individual locations or for regional averages. That form of information could be used to 
populate a table for different locations or regions. It could also be done for different magnitudes 
of a particular quantity of interest, such as the likelihood of wind speeds in the range 20-30 

m.s-1 or 30-40 m.s-1 by 2050 on average in a region of interest, using the Lines of Evidence 
Table to assign a likelihood measure (i.e., probability of occurrence) for the projections.  

The SMPL is designed to enable a likelihood measure (i.e., probability of occurrence) 
to be assigned to projections based on considering a comprehensive range of information. This 
can be done for different projected values (or ranges) within the full distribution of plausible 
change, noting that the total sum of the percent likelihood measures should equal 100%. The 

number of different projection ranges selected can be varied depending on the specific 
application intended, noting that it will always include at least two ranges (e.g., a projected 
increase in temperature with a likelihood estimate of 99% also implies a 1% likelihood estimate 
of little change or decrease). 

For Step 2, to determine the Projections Likelihood Information for each quantity of 
interest, model output is considered together with the other information provided in the Lines 

of Evidence Table (i.e., the observations and physical process understanding). Th e Lines of 
Evidence Table can help guide the expert judgement that may be required to produce 
projections of future change. For example, this could include a greater reliance on direct model 
output for variables such as extreme temperature for which there is typically higher confidence 

than for variables such as extreme wind gusts for which a greater reliance on physical process 



  

understanding and other lines of evidence may be practical (e.g., statistical diagnostic methods 
calibrated to observations data, rather than the use of direct model output). 

These steps comprising the SMPL can be applied for a particular time period and 
emissions scenario(s) of interest, which can help understand the strengths and limitations of 
projections information for specific variables and regions. For this project, the method is 

applied for the projected change in climate from the time period 1986–2005 (i.e., a commonly 
used historical reference period for CMIP5 data (CSIRO & BoM 2015)) to the time period 
2040–2059 (i.e., a time period centred on 2050 as requested by energy sector stakeholders). 

The RCP8.5 scenario, representing a high emissions pathway for anthropogenic 
greenhouse gases, is used for the future projections for a number of reasons. Of the set of 
modelled greenhouse gas emission pathways provided in CMIP5 (which start to deviate from 

each other after 2005), observed climate change trends for temperature indicate that high 
emissions pathways (e.g., RCP8.5) have generally been followed more closely than low 
emissions pathways (e.g., RCP2.6) (IPCC 2013; Schwalm et al. 2020). Additionally, although 
there is potential for reductions in greenhouse gas emissions and the associated rate of 

temperature increase later this century, RCP8.5 is used here for the application of this method 
given that it takes many years after changes in emissions for an emergent change in a climate 
trend, with the focus for this application on conditions from now until around the middle of 
this century. However, for applications in which projections are needed based on lower 

emissions pathways than RCP8.5, methods could be used for scaling the projected changes in 
extremes according to the global warming magnitude for a particular time period or emissions 
pathway, such as has been recently demonstrated (NESP 2020). For further details on the 
relevance of using CMIP5 data for RCP8.5 for projections towards the middle of this century 

see Schwalm et al. (2020). 

For the method application in this study, the information collected in Step 1 for the 

Lines of Evidence Table is intended to be of relevance for the National Energy Market (NEM) 
region around parts of southern and eastern Australia including listing any regional variations 
that might be important to consider within that region. 

Table 2.1: Confidence can be assessed based on the degree of evidence and agreement, 
consistent with IPCC guidelines. The degree of confidence can then be used together with the 
projections data to help provide likelihood estimates (i.e., probability of occurrence) 
consistent with Mastrandrea et al. (2011). 

 Limited evidence Medium evidence Robust evidence 

High agreement Medium 

confidence 

Medium-High 

confidence 
High confidence 

Medium 

agreement 

Low-Medium 

confidence 

Medium 

confidence 

Medium-High 

confidence 

Low agreement Low confidence Low-Medium 

confidence 

Medium 

confidence 

2.2 Examples of how the SMPL results are being used 

The results from applying the SMPL, including the probabilistic projections for 
extremes and confidence assessment (based on synthesising a comprehensive range of 
evidence), are being used through the ESCI project in several ways such as listed below. The 



  

nationally consistent calibrated projections presented here are also intended to be of use for a 
broad range of future applications in many other sectors. This includes for applications such as 
improved planning and helping to build resilience in relation to the influence of anthropogenic 

climate change on future hazards in Australia. 

➢ Enhanced resilience: Randomised failures are currently used as synthetic input to energy 
sector modelling for matching supply and demand, including for assessing future changes 
in the resilience of the NEM. As suggested by energy sector groups, the outputs of the 

SMPL can be used to refine these failure rates, to help design and plan for a network that 
is more resilient to future climate change based on considering a comprehensive range of 
evidence. 

➢ Enhanced reliability: The SMPL outputs can be used for providing guidance to accompany 
the projections data provided as input for the NEM reliability modelling, including insight 
on whether some datasets might be preferentially weighted over others for some 

variables/regions. 

➢ Enhanced design and planning: Probabilistic projections information for extremes from the 

SMPL outputs can help understand the future risk of failure for various types of 
infrastructure, providing important knowledge for the design and planning of individual 
components in the NEM and other energy sector applications in Australia. Another example 
includes the use of the 10-yr ARI maps for temperature in AEMO's 2020 Integrated System 

Plan (ISP). 

➢ Enhanced guidance for stakeholders on climate risk and hazard scenarios including 

compound events: The comprehensive review and synthesis framework of the SMPL is 
being used to help examine some details for compound event scenarios (i.e., aspects of the 
combined sets of conditions defined in ESCI project case study activities), intended for use 
in subsequent risk assessment applications and 'stress testing' activities on climate hazards. 

➢ Broader applicability: Although the ESCI project is primarily intended to meet the needs 
of the electricity sector in Australia, these SMPL results are also intended to have broader 

benefits including for other sectors, given the relevance of extreme temperatures, winds 
and bushfire conditions to other sectors. 

  



  

3. Method application: extreme temperature 

3.1 Introduction 

The SMPL is applied here for extreme values of daily maximum temperature at a height 
of 2 m during summer, with a focus on the 10-yr ARI values in south-eastern and eastern 
Australia. The application of this method follows the steps described in Section 2. 

For Step 1 of the method, short summaries are presented below for different aspects 
relating to future changes in extreme temperature during summer. Regional variations are noted 

in these summaries if relevant within the region of focus. The summaries are then used to 
populate the Lines of Evidence Table for extreme temperature (Table 3.1), with key details 
from the summaries noted succinctly in the table in terms of the degree of influence that this 
aspect has on extreme temperature and its implied direction of projected change (either an 

increase, decrease, little change or increased uncertainty). 

For Step 2 of the method, the results from the Lines of Evidence Table are used for 

guidance in producing the Projections Likelihood Information. For this study, this includes the 
best estimate of the most probable projected change in extreme temperature (presented here as 
maps) as well as estimates of the 10 th and 90th percentile range of plausible change as a measure 
for indicating the degree of confidence in the future projections. The RCP8.5 emissions 

pathway from CMIP5 is considered relevant for use here in providing projections towards the 
middle of this century, given that some key observations for climate are closely tracking that 
pathway (Schwalm et al. 2020) and noting the considerable time delay from a change in 
emissions until when an emergent climate response can be detected (including for the extremes 

considered here). Projections for this pathway are analysed using a historical reference period 
of 1986-2005 similar to that for the IPCC Fifth Assessment Report using CMIP5 data, with the 
focus of results presented here on projections centred on 2050 (i.e., for the period 2040-2059). 

3.2 Summaries for physical processes (not listed in order of importance) 

Soil moisture 

Through its control on the exchange of water and energy between the land and the 

atmosphere, near-surface soil moisture plays a key role in determining air temperature. For 
example, drier soils can increase the likelihood of extreme temperatures including as has been 
documented for eastern Australia (Perkins et al., 2015; Herold et al., 2016) and northern 
Australia (Hirsch et al. 2019). Soil moisture also plays an important role in developing and 

maintaining extreme heat as documented for Australian heatwaves (Perkins et al., 2016; Wehrli 
et al., 2019). 

On a daily timescale, soil moisture is highly variable in time and space and depends on 
a range of factors such as recent rainfall, vegetation water use and evaporation (Jovanovic et 
al. 2008; Ukkola et al. 2019). Soil moisture also varies seasonally and can depend on the 
previous season's weather conditions and climate states such as large-scale modes of 

atmospheric and oceanic variability (e.g., ENSO) and associated weather variations as well as 
longer-term drought conditions. The high level of natural variability of soil moisture in both 
time and space, as well as the broad range of factors that can influence soil moisture, makes it 
challenging to determine future changes in these quantities based on model simulations. 

In the coming decades, soil moisture is projected to decrease on average over much of 
Australia, particularly in the southeast where mean rainfall is expected to decrease (particularly 

during the cooler months of the year) and atmospheric evaporative demand is expected to 
increase (Berg et al., 2017, CSIRO & BOM 2015). For southern and eastern Australia, more 



  

frequent periods of dry soil are projected to occur in the future with a reasonably high degree 
of confidence, mostly in winter and spring but also summer (CSIRO & BoM 2015; Ukkola et 
al. 2020), with this higher frequency of drier soils expected due to higher rates of atmospheric 

evaporative demand and increased periods of drought. There is potential for increased rainfall 
during summer, including extreme rainfall in some of the more northeast regions, which could 
influence soil moisture, with medium confidence (CSIRO & BoM 2015). These previous 
findings are broadly consistent with new projections of soil moisture produced through the 

ESCI project (as detailed in a case study report on hydrological applications available from the 
ESCI website). The level consistency between different studies and modelling approaches can 
help provide some confidence in the projected future changes of soil moisture.  

There are considerable uncertainties around climate models simulations of how soil 
moisture can influence temperature through land-atmosphere coupling processes. For example, 
a recent study has shown that climate models may overestimate the coupling between soil 

moisture and extreme temperatures in wet areas of the globe, so potentially overestimate this 
aspect to some degree relating to increases in extreme temperatures (Ukkola et al., 2018). There 
are also uncertainties in the influence of climate change on the direction and magnitude of soil 
moisture change, including relating to uncertainties in changes to rainfall, potential evaporation 

and the use of soil water by vegetation under increasing levels of CO2 (Jovanovic et al. 2008; 
Ukkola et al. 2020). 

In summary, soil moisture can be an important influence on temperature extremes, 
while noting some uncertainties in the ability of climate models to simulate some processes 
that are relevant for soil moisture. Projections indicate more frequent periods of dry soil 
moisture on average in the future during summer in southern and eastern Australia, which will 

act to increase the risk of extreme temperatures, with medium confidence. 

Cloud cover and solar radiation 

Extremely high surface temperatures require strong solar radiation (e.g., downwelling 
shortwave radiation near the surface) which can occur during periods of reduced cloud cover. 
Conversely, cloud cover can reduce the chance of extreme temperatures. For example, in 
California, coastal low clouds have been found to moderate heatwaves, particularly the 

likelihood of a heatwave to extend to the coast (Clemesha et al. 2018). 

Projections based on global climate models (GCMs) indicate little change or a small 

increase in solar radiation in the southeast and east of Australia during summer (CSIRO & 
BoM 2015). However, the presence of clouds is a major area of uncertainty in climate models, 
both in terms of future projections and the interaction between clouds and o ther variables like 
temperature and atmospheric circulation (Grise & Polvani 2014; Myers & Norris 2015; Voigt 

et al. 2020). Additionally, there is a large degree of natural variability in cloud cover and solar 
radiation, which makes it challenging to determine future changes in these quantities based on 
model simulations. 

In summary, cloud cover and solar radiation are important influences on the occurrence 
of extreme temperature. Future changes for the southeast and central east regions during 
summer indicate little change or a small increase, with low confidence due to high natural 

variability and the limitations of climate models in being able to accurately simulate clouds. 
Regional climate models (RCMs) may provide improvements over GCMs in relation to this 
aspect, although evidence in the literature is sparse. 

Subtropical ridge 



  

An intense subtropical ridge (STR) of mean sea-level pressure is associated with an 
increase in the mean maximum temperature and the frequency of days above the 90 th percentile 
in southern Australia in all seasons (Pepler et al. 2018). This relationship is strongest in winter 

and spring, including in southern regions such as Victoria and Tasmania. During summer an 
intense STR is associated with more hot days in Tasmania but fewer hot days on the east coast 
including Brisbane. Observations and reanalysis data show the STR has grown more intense in 
recent decades, which has contributed to observed declines in southeast Australian rainfall 

(Timbal & Drosdowsky, 2013). It is unknown whether the intensification of the STR has also 
contributed to past changes in maximum temperature or hot days, but it has contributed to some 
changes in cold nights in southeast Australia (Pepler et al. 2018). 

The STR seasonal cycle is relatively well simulated in CMIP5 and is projected, with 
high confidence, to intensify in the future (CSIRO & BoM, 2015). In this regard, CMIP5 
models represent a significant improvement over CMIP3 models. Despite confidence in the 

projection of STR intensification, it is uncertain how future intensification will impact future 
extreme temperatures in Australia. Although CMIP5 models have limited ability to replicate 
the STR influence on Australian rainfall (CSIRO & BoM, 2015), the STR relationships with 
temperature are mostly independent of the STR-rainfall relationships (Pepler et al. 2018) and 

it is a current knowledge gap in the literature as to how well the CMIP5 models replicate the 
STR relationship with extreme temperatures. 

In the Southern Hemisphere, the STR intensification and other measures of tropical 
expansion have been linked to climate change (Nguyen et al. 2015; Grise et al. 2019) with 
some contribution from ozone depletion in the summer months as well as natural variability 
(Garfinkel et al., 2015; Waugh et al., 2015). Climate models consistently project a future 

southward shift and intensification of the subtropical ridge (Kent et al. 2013; Grose et al. 2015). 
However, this may be masked by the influence of ozone hole recovery during the summer 
months in coming decades to some degree (IPCC 2013). 

In summary, the STR has historically had a significant influence on the occurrence of 
extreme temperatures, with more intense STR associated with hotter summer temperatures 
particularly in southern Australia. Although CMIP5 models do a reasonable job of simulating 

the STR, including an increase in intensity being likely in the future, the impact of the STR on 
future extreme temperatures is somewhat uncertain. As STR is a large-scale feature with links 
to broader-scale processes such as tropical expansion, RCMs may offer relatively limited 
improvement over GCMs in representing the STR. However, RCMs may be better able to 

simulate the impacts of the STR on local climate extremes, due to better simulation of 
interactions between the large scale and local factors such as cloud cover. 

Cold Fronts 

Frontal systems are major drivers of extreme temperature events in southern Australia. 
Strong northwesterly winds prior to cold fronts enhance the advection of extreme heat from 
inland Australia towards the southeast regions during summer. Some studies suggest relatively 

little change in the frequency of fronts in southeast Australia and a slight decrease in their mean 
intensity over recent decades (Rudeva & Simmonds, 2015), while some studies also indicate 
the frequency of fronts has decreased in some regions of southeast Australia such as for the 
eastern seaboard (Pepler et al. 2021). 

Climate models are generally able to simulate the average annual frequency of fronts 
in the Australian region during winter, but relatively few studies have examined this during 

summer (Catto et al. 2015; Blázquez & Solman 2017). Climate model projections have a weak 
increase in the frequency and intensity of all fronts in southern Australia, but the available 



  

projections do not distinguish the cold fronts associated with northwesterly winds from weaker 
warm and stationary fronts (Catto et al. 2014; Blázquez & Solman 2019). Using the older 
CMIP3 climate models, a simple temperature-based proxy for very extreme cold fronts 

associated with summer temperature extremes and bushfires indicated a likely future increase 
in the frequency of frontal systems (under both medium and high emissions scenarios), 
increasing from ~0.5 events per year in the current climate to 1-2 events per year by the end of 
the 21st century (Hasson et al. 2009). Considering studies such as these, considerable 

uncertainties remain in relation to extreme temperature events associated with fronts in the 
during summer and how these events could potentially change in the future, including 
considerable uncertainties in relation to future changes in the influence of fronts on the 
occurrence frequency of extreme temperatures in southern and eastern Australia. 

 In summary, observations indicate f rontal activity has undergone little change in 
southern and eastern Australia during summer, with considerable uncertainty for future 

projected changes in frontal systems and their impact on extreme temperatures. Given that 
fronts are synoptic-scale systems which GCMs can simulate reasonably well, there may not be 
a large benefit from using RCMs to examine future frontal system activity compared to other 
factors like clouds and solar radiation. However, RCMs could potentially provide value for 

some aspects relating to fronts such as their interaction with terrain and associated extreme 
weather impacts for localised regions in some cases. 

Blocking / high pressure systems 

For southeast Australia, anticyclones (high pressure systems) are typically associated 
with cool southerly winds to the east of the high-pressure system and warm northerly winds to 
the west. A persistent and slow-moving (‘quasi-stationary’) high pressure system in the Tasman 

Sea is often referred to as a blocking high and can cause extreme heat in southeast Australia 
(Marshall et al. 2013; Boschat et al. 2015; Gibson et al. 2017). This is somewhat distinct from 
so-called "split-flow" blocking typically to the south of Australia, that can sometimes cause 
cooler temperatures in some parts of southern Australia with climate models generally 

simulating a decrease in the frequency of winter split-flow blocking in the Tasman Sea but 
little change during the summer months (Patterson et al. 2019) (also noting the focus of this 
study on summer rather than winter).  

GCMs are generally able to simulate anticyclones, as they tend to be large-scale 
systems, but may underestimate their persistence and the frequency of long periods of ‘quasi-
stationary’ blocking (Woollings et al. 2018). GCMs are able to simulate some of the larger-

scale pressure patterns associated with heatwaves in southeast Australia, including 
anomalously high pressure in the Tasman Sea. Anticyclones tend to be stronger and slightly 
further south in CMIP5 projections of future climate, which could contribute to increased 
temperature extremes in the future (Purich et al. 2014). The mean sea level pressure over the 

Tasman Sea is also projected to increase in the 21st century in CMIP5 models (Hope et al. 
2015). 

In summary, blocking / high pressure systems, particular in the Tasman Sea region, can 
influence the occurrence of extreme heat events in southeast Australia during summer. 
Although there is some potential for this to increase in the future there are considerable 
uncertainties around this based on existing studies. GCMs can provide a reasonable 

representation of some of the larger-scale pressure features relevant to the advection of hot air 
from further inland over the continent, while noting some blocking events can be better 
represented by finer resolution models (Dawson et al. 2012). 

Tropical cyclones 



  

The occurrence of tropical cyclones (TCs) in northern Australia has been linked with 
the intensification of heat extremes in southern Australia, including in southeast Australia 
during summer (Parker et al. 2013; Quinting & Reeder 2017; Quinting et al. 2018). For 

example, the extreme heat experienced around the time of the Black Saturday fires in 2009, 
which set new temperature records for daily maximum air temperature for Melbourne and 
surrounding locations, was associated with the presence of a TC (Parker et al., 2013). 
Observations indicate a decrease in occurrence frequency of TCs for the Australian region over 

recent decades (Dowdy 2014; Chand et al. 2019). 

Future projections of TCs during summer for the Australian region indicate a small 

decrease in their frequency (medium confidence) (Bell et al. 2019). However, the frequency of 
intense category 4 and 5 TCs may not change or increase slightly, along with some poleward 
migration (low confidence) (CSIRO & BoM 2015; Knutson et al. 2020; NESP 2020). In 
general, GCMs have insufficient spatial and temporal resolution to adequately simulate tropical 

cyclones. RCMs generally have finer resolution and better resolve tropical cyclones, although 
RCMs still do not fully capture all relevant processes. For this reason, additional methods for 
cyclone projections can also be useful to consider, such as synthetic cyclone tracks, in addition 
to dynamic modelling. For further details on TCs in a changing climate see NESP (2020). 

Modes of variability - ENSO 

The relationship between the El Niño-Southern Oscillation (ENSO) and temperature 

extremes is complex. Across most of northern and eastern Australia, the frequency, duration 
and amplitude of heatwaves increases during El Niño years (Perkins et al. 2015; Loughran et 
al. 2019). However, in parts of the southeast including Victoria, there is either little relationship 
between ENSO and heatwaves or an increase during La Niña years, related to an increase in 

tropical convection and more slower-moving weather systems (Parker et al. 2014; Perkins et 
al. 2015). El Niño years are also associated with reduced cloud cover leading to higher 
temperatures and an increase in the temperature of the hottest day of the year across most of 
Australia (Arblaster & Alexander, 2012). 

Although correlations between mean temperature and ENSO conditions have been 
examined in numerous previous studies (such as some discussed in this section), this has not 

been examined in much detail for more extreme measures of temperature. To help address that 
knowledge gap, correlations are presented in Figure 3.1 for ENSO, as well as for SAM and 
IOD (relating to subsequent sections below). The general patterns of correlation (indicating the 
strength of the relationship with ENSO) are broadly consistent for mean and extreme 

temperatures, indicative of higher temperatures in general occurring for El Niño than La Niña 
conditions. 

There are considerable uncertainties around how ENSO conditions (including extreme 
ENSO events) may change later this century based on GCMs (CSIRO & BoM 2015). 
Projections of an increase in frequency of ENSO events being sensitive to the model used 
(Freund et al 2020) and frequency of extreme ENSO events sensitive to the definition used 

(Marjani et al. 2019). As the teleconnections between ENSO and Australian rainfall and 
temperatures have varied over time (Power et al. 1999), the strength of these relationships may 
also change in the future (Fasullo et al. 2018). However, some studies have suggested there 
might be an increase in the number of strong El Niño and La Niña events in future (Cai et al. 

2018a). As modes of variability such as ENSO are phenomena generated in association with 
very large-scale atmosphere-ocean interactions, RCMs do not provide benefits over GCMs in 
simulation how the modes of variability may change in the future. However, RCMs may 
provide further detail on how modes of variability influence local and regional climate, 



  

including cloud cover. In fact, RCMs have been shown to capture the historical teleconnection 
between ENSO and Australian maximum temperatures quite well (Fita et al. 2016). 

In summary, the influence of ENSO on future extreme temperature events involves 
considerable uncertainties. The uncertainties in ENSO simulation are not able to be resolved 
through the use of currently available RCM data (e.g., no coupled RCM simulation has been 

performed to date over a domain large enough to encompass the processes leading to ENSO) 
but RCMs may help in simulating local responses to large-scale drivers such as ENSO. 

 

Figure 3.1: Correlations between temperature and climate measures. This is presented in the 
upper row of panels for daily maximum temperature (using average summer values for the 
months December to February: DJF) and measures representing different modes of variability 
including ENSO (using the NINO3.4 index), SAM (using the SAM index) and IOD (using 

the DMI index). Similar correlations are also shown in the lower row of panels, but for the 
number of days with temperature above the 99.5th percentile during summer. These 
correlations are all based on the period from 1979 to 2019, using one value for each summer 
period (DJF). NINO3.4 and DMI data are attained from the NASA ESRL 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/) while SAM data are from 
https://legacy.bas.ac.uk/met/gjma/sam.html. Pearson's correlation coefficient, r, is shown 
with stippling corresponding to statistically significant values at the 95% confidence level (2 -
tailed). 

Modes of variability – IOD 

The IOD mostly influences Australian weather during the winter and spring, so it has 

little relationship with extreme heat during the summer months in general (Perkins et al. 2015), 
as well as noting interactions between the Indian Ocean Dipole (IOD) and ENSO (Cai et al. 
2019). The relationship between IOD and average values of daily maximum temperature is 
broadly similar to that for the more extreme values of daily maximum temperature, with 

positive correlations through southern and eastern Australia in general (Fig. 3.1). There is some 
indication that extreme positive IOD events may become more frequent in the future (Cai et al. 



  

2018b) but there is considerable uncertainty in the ability of climate models to simulate such 
events (CSIRO & BoM 2015). 

Modes of variability - SAM 

The Southern Annular Mode (SAM) is a large-scale alternation of atmospheric mass 
between the middle and high latitudes. The positive phase is associated with a higher-than-

normal mean sea level pressure in middle latitudes and lower pressure in high latitudes. During 
a positive phase of the SAM there is a southward shift for the belt of westerly winds that circles 
Antarctica, while the opposite occurs during the negative phase. The La Niña phase of ENSO 
increases global mean temperature and can contribute to a negative shift in the SAM (Wang & 

Cai 2013). 

Positive SAM is associated with a decreased likelihood of extreme heat during the 

spring, but correlations are more mixed during the summer months (Hendon et al. 2007; 
Marshall et al. 2013; Perkins et al. 2015). The relationship between SAM and average values 
of daily maximum temperature is broadly similar in spatial patterns (e.g., sign of correlation, 
from Figure 3.1) to the case for the relationship between SAM and the occurrence of more 

extreme values of daily maximum temperature, with generally weak correlations or a negative 
correlation in central eastern regions (particularly for mean temperature). A strong negative 
SAM is also associated with sudden stratospheric warmings (as occurred in the 2019 Austral 
spring), which can cause extreme heat during spring and early summer (Lim et al. 2019), 

potentially associated with some of the negative correlations apparent in Figure 3.1 for the 
central east region. 

SAM has been becoming more positive in recent decades, particularly during the 
summer months (Marshall, 2003), which has been linked to a combination of increased 
greenhouse gases as well as ozone depletion and natural variability (Garfinkel et al. 2015; 
Waugh et al. 2015). CMIP5 models project a robust shift towards more positive values of SAM 

in all seasons during the 21st century (Lim et al. 2016), although this may be masked to some 
degree by the influence of ozone hole recovery during the summer months in coming decades 
(Banerjee et al. 2020). In summary, climate models can simulate SAM well, but projections of 
a positive trend in SAM would likely cause little change in the risk of heat extremes during 

summer apart from potentially central east (noting a negative correlation with temperature as 
well as links with sudden stratospheric warmings (Lim et al. 2019) for which future projected 
changes are not currently known). 

Modes of variability – MJO 

The Madden-Julian Oscillation (MJO) is the dominant mode of atmospheric intra-
seasonal variability and the cornerstone for sub-seasonal prediction of extreme weather events 

(Wang et al. 2019). Extreme heat in south-eastern Australia is more common during MJO 
phases 2 and 3 in spring and phases 3-6 in summer (Marshall et al. 2013; Parker et al. 2014). 
The influence of climate change on the MJO is uncertain, with less confidence in changes in 
MJO-related wind and circulation anomalies than for rainfall (Maloney et al. 2019), noting that 

CMIP5 GCMs are not able to provide a good representation of the MJO (CSIRO & BoM 2015). 
Consequently, this remains an uncertain factor in relation to extreme summer heat in the future 
including for southern and eastern Australia. 

Urban effects including urban heat island 

 The temperatures in urban environments are typically warmer than the surrounding 
rural areas, particularly at night. This is a consequence of changes to many surface properties 



  

which alter the surface energy budget, in addition to the presence of additio nal sources of 
anthropogenic heat. The additional overnight heat can contribute to enhanced heat stress on 
urban populations, although this may be partially counteracted by lower humidity (Fischer et 

al. 2012; Williams et al. 2012). While some studies have suggested that the urban heat island 
(UHI) is more intense during hotter conditions, this varies between studies and between 
different areas of the world (Scott et al. 2018, Zhao et al. 2018, Chew et al. 2020).  Due to the 
small spatial scale of cities and the complexity of their terrain, these are typically only well 

simulated in high resolution regional downscaled simulations, not coarse GCMs (Argueso et 
al. 2015; Wouters et al. 2017). 

The UHI effect adds a few degrees to temperatures over urban environments (Gartland 
2011). This has been shown over the largest cities in Australia including Sydney (Argueso et 
al. 2014), Melbourne (Imran et al. 2019), Brisbane (Chapman et al. 2019) and Adelaide (Guan 
et al. 2016). The UHI has been found to exacerbate temperature extremes at night during 

heatwaves in these cities (Argueso et al. 2015; Imran et al. 2019; Rogers et al. 2019). Daytime 
maximum temperatures during heatwaves reflect the standard UHI addition to the temperature 
of the surrounding areas. The increased night-time temperatures mean that systems have less 
opportunity to cool overnight which poses a hazard for some systems including human health. 

Cities will likely experience similar temperature increases due to global warming as 
their surrounding regions but will remain warmer due to the UHI. It is uncertain whether the 

intensity of the UHI will change as the planet warms, with any changes sensitive to changes in 
other factors such as green space (i.e., vegetated areas including tree cover), soil moisture and 
circulation (Fischer et al. 2012; Zhao et al. 2018). However, in regions which are currently on 
the urban fringe, future population growth and urban expansion is expected to result in 

additional increases in hot extremes beyond that expected from climate change alone (Argueso 
et al. 2015; Wouters et al. 2017). In summary, the UHI effect means that extreme heat events 
are more severe in urban regions, regardless of climate change, and urban areas are often not 
well simulated in coarse resolution GCMs, although this can be better resolved in RCMs with 

dedicated urban parameterisations. It is unclear if this effect will change in the future, but future 
warming is expected to be larger in areas which are also experiencing urbanisation. 

3.3 Summaries for historical information 

Observed trends 

 Extreme temperature events have been steadily increasing in frequency and intensity 
throughout Australia due to increases in atmospheric concentrations of greenhouse gases 

(CSIRO & BoM 2015; BoM & CSIRO 2020). For example, the number of extreme heat records 
in Australia has outnumbered extreme cool records by about 3 to 1 since 2001 for daily 
maximum temperatures (BoM & CSIRO 2020), characteristic of a shift in the full distribution 
of temperature values due to anthropogenic global warming. In parts of southeast Australia, 

the hottest summer days have increased by a larger degree than expected from the change in 
mean temperatures alone (Gross et al. 2019). Heatwave events have also increased in intensity, 
frequency and duration across Australia in recent decades (Perkins-Kirkpatrick et al. 2016). 
The 2019 year was Australia’s hottest on record, as well as having 42 days when the Australian 

area-averaged daily mean temperature was above the 99 th percentile (which also set a new 
record for that measure of extreme temperatures for individual days). 

Model assessment 

 The ability of climate models to simulate aspects such as the seasonal cycle, observed 
trends, spatial detail and extremes is important for helping to understand the degree of 



  

confidence in future projected changes based on these models. Assessments as pre sented in 
CSIRO & BoM (2015) indicate that global models provide a reasonably good representation 
of these aspects, including regional and seasonal temperature variations through Australia as 

well as the observed trends. 

3.4 Summaries for projected changes 

Several datasets are available for future projections of values corresponding to 10-year 
ARI of daily temperature. The datasets include dynamical downscaling using the CCAM 
modelling approach (conformal cubic atmospheric model) applied to 5 GCMs (ACCESS1-0, 
CanESM2, GFDL-ESM2M, MIROC5 and NorESM1-M), dynamical downscaling using the 

BARPA modelling approach (Bureau of Meteorology Atmospheric Regional Projections for 
Australia) applied to the ACCESS1-0 GCM for eastern Australia, dynamical downscaling 
using the NARCliM modelling approach (NSW and ACT Regional Climate Model) applied to 
3 GCMs (ACCESS1-0, ACCESS1-3 and CanESM2, with 2 configurations of each). These 

datasets have all been calibrated using the quantile matching for extremes (QME) approach 
described in Dowdy (2020b). Calibrated data (using QME) were also available based on four 
GCMs for use in this analysis (for ACCESS1-0, CNRM-CM5, GFDL-ESM2M and MIROC5 
GCMs). For further details on the selection and assessment of these models see Thatcher et al. 

(2021). It is generally recommended to use a broad range of modelling approaches (rather than 
only relying on a single method) when trying to sample the uncertainty space for plausible 
future changes, such that a focus on this report is on the combined results from this 16-member 
ensemble of calibrated projections datasets (i.e., 5 from CCAM, 1 from BARPA, 6 from 

NARCliM and 4 from GCMs). This is particularly important for helping to provide enhanced 
confidence in projections of extremes, as is a focus here. 

To calculate the values corresponding to the 10-year ARI, a Generalised Extreme Value 
(GEV) approach was used. This is based on 20-year time slices: using 1986-2005 for the 
historic period and 2040-2059 for the future climate projection for the RCP8.5 emission 
pathway (noting that these projections data are also available for other time periods throughout 

this century and historical periods, as well as for RCP4.5). The projections from these different 
methods are presented in Figure 3.2 for the GCMs, CCAM, BARPA and NARCliM ensembles, 
all with QME calibration applied. Each method shows clear increases in extreme temperatures 
projected for the future climate. Further details on these various different datasets and methods 

are available in Thatcher et al. (2021). 

In addition to these results based on CMIP5, some results have recently been published 

based on some CMIP6 projections (Grose et al. 2020). Those results show broadly similar 
changes for temperature extremes in Australia to those based on CMIP5 projections, noting 
that subsequent studies will continue to examine this further including based on a larger set of 
CMIP6 models than was available for that study. 



  

 

Figure 3.2: Projected change in values corresponding to the 10-year ARI for daily maximum 
temperature at a height of 2 m. This is shown based on GCMs (left panels), CCAM (second 
to left panels), BARPA (second to right panels) and NARCliM (right panels), all calibrated 
using the QME method. Maps are shown for Australia based on the model ensemble average 

in each case. This is presented for the historical climate based on 1986-2005 (upper panels) 
and future simulated climate based on 2040-2059 under a high emissions pathway RCP8.5 
from CMIP5 (lower panels). 

3.5 Lines of Evidence Table 

Table 3.1: Lines of Evidence Table for extreme daily maximum temperature at a height of 2 
m, with a focus on summer in the southeast and east of Australia. The degree of influence is 
listed in black, followed by whether this information implies an increase (red), decrease 
(blue) or little change (black) in extreme temperature, as well as by increased uncertainty 

(purple) in the direction of change. The rows of information are not in order of importance.  

Physical processes 

Soil moisture Moderate influence. More frequent dry soil with medium confidence; 
potential increase in northeast. Influence on temperature potentially 

overestimated. Regional models likely to add value. 

Cloud cover and 

solar radiation 

Moderate influence. Low confidence in little change or a small 
increase. Regional models likely to add value. 

STR Large influence, primarily in southern Australia. Potential increase 
with low confidence in future influence on extreme temperature. 

Fronts Moderate influence. Future change uncertain. 

Blocking Moderate influence. Future change uncertain. 

Tropical cyclones Small influence. Fewer in the future (medium confidence) from 
global models; regional models likely to add value. 

ENSO Small to moderate influence. Uncertain future change; potentially 

more frequent strong El Niño events (low-medium confidence). 

IOD Small to moderate influence. Uncertain future change; potentially 
more frequent strong IOD events (low-medium confidence). 

SAM Small to moderate influence. Positive trend in SAM relevant for 
northeast region temperatures (medium confidence). 

MJO Small influence. Uncertain future change. 



  

3.6 Projections Likelihood Information 

The Lines of Evidence Table (Table 3.1) shows considerable agreement on increased 
extreme temperatures in a warming climate, including 10-year ARI daily maximum 

temperatures in the southeast and east of Australia during summer as is a key focus here. 
Although there are some physical processes noted that add uncertainties, particularly based on 
GCM projections data, the RCM approaches (CCAM, BARPA and NARCliM) can help with 
the simulation of some of these processes. Therefore, the relatively high level of agreement 

between RCM approaches helps add some confidence for projected future increases. Based on 
this overall assessment considering this wide range of factors, there is Very High Confidence 
in the projected direction of change, with a future increase in 10-year ARI temperatures being 
Very Likely (i.e., 90-100% probability). 

Based on the above points and details in the Lines of Evidence Table, projected changes 
for 10-year ARI temperatures for the 2050 climate are considered here based on the 16-member 

ensemble of calibrated projections datasets, combined based on equally weighting each 
member of this ensemble. The ensemble median is used as a central estimate of the most 
probable projected change (Figure 3.3). As an estimate of the range of plausible values from 
the 16 ensemble members, the second lowest value from the ensemble is used for the 10th 

percentile and the second highest value from the ensemble is used for the 90th percentile. These 
values are calculated individually at each grid cell location for the median and percentile 
estimates. 

The results show that the future projected temperatures are higher than for the historical 
period, including for the lower estimate corresponding to the 10 th percentile of the model 
ensemble in the future, as well as for the median and upper estimate (90 th percentile). This 

highlights the considerable degree of agreement between these diverse modelling approaches. 

Urban effects Important for local heat extremes. Urban heat island adds a few 
degrees and stays reasonably consistent in future (high confidence); 
increased temperature extremes in areas of future urban growth. 

Assessment for historical period 

Seasonal cycle Models reproduce the seasonal cycle and spatial variability (high 

confidence). 

Historical trend Strong increase from observations (high confidence). Models 
reproduce the trend well (high confidence). 

Projected future change 

GCMs (CMIP5 

and CMIP6) 

Strong increase (high confidence). 

CCAM Strong increase (high confidence). 

NARCliM Strong increase (high confidence). 

BARPA Strong increase (high confidence). Based on one model to date. 

Very fine 

resolution 

Uncertain future change due to lack of available data and analysis. 



  

 

Figure 3.3: Projected values corresponding to the 10-year ARI for daily maximum 
temperature at a height of 2 m, based on a 16-member ensemble of calibrated model 

projections. Maps are shown through Australia for the historical period (based on 1986-2005; 
upper panel), as well as for the future simulated climate (based on 2040-2059 under a high 
emissions pathway RCP8.5: lower panels) including a central estimate with lower and upper 
estimates also provided. 

  



  

4. Method application: extreme winds 

4.1 Introduction 

The SMPL is applied in this section similar to in Section 3, but with a focus here on 
extreme winds during summer (December-February) in the southeast and east of Australia. 
Destructive winds in Australia can be caused by severe thunderstorms (i.e., localised weather 

systems characterised by strong and deep moist convection) or by larger-scale synoptic systems 
such as tropical cyclones or extratropical cyclones and their associated frontal systems. In 
addition, systems on these two different scales can occur simultaneously in  the same 
geographic region, resulting in compound events with enhanced impacts (Dowdy & Catto 

2017). 

Convective hazards including damaging wind gusts from severe thunderstorms occur 

most frequently during the warmer months of the year (Brown & Dowdy 2021). The impacts 
of tropical cyclones (TCs) and a type of midlatitude cyclone known as east coast lows (ECLs) 
are mostly confined to some near-coastal regions of eastern Australia (e.g., Dowdy et al. 
2019a). Further details are available on climate change influences on ECLs and TCs in a 

changing climate (Chand et al. 2019; Dowdy et al. 2019a; NESP 2020). In contrast, convective 
systems (severe thunderstorms) affect all of Australia and have been responsible for most of 
the surface wind gusts which exceed the 10-year ARI near the major population centres 
including in the southeast and east of Australia (Holmes 2002), such that the SMPL is applied 

here with a focus on severe convective wind gusts. Other phenomena including TCs and ECLs 
are also considered here in some sections for completeness. 

For Australia, wind gusts are defined by a 3-second average wind speed. Severe 
convective wind gusts (SCWs) are considered for the purposes of this study as exceeding 25 
m.s-1, at a height of 10 meters above ground level, caused by thunderstorm outflow. This 
threshold (equivalent to exceeding 90 km.hr-1) is consistent with the threshold used for severe 

weather forecasting and operational warnings produced by the Australian Bureau of 
Meteorology. While gusts of around 25 m.s-1 may not always be destructive, it is noted that 
this definition is based on exceeding that value and therefore also includes higher wind speeds 
(e.g., around 45 m.s-1) which have a higher chance of causing property damage. This covers a 

range of ARI values consistent with wind speeds such as provided in current Australian 
standards, including spanning a range broadly similar to the values for the 10-yr ARI in 
southern and eastern Australia assuming flat, open terrain (Holmes, 2002). The atmospheric 
environments which produce this range of wind gusts (roughly around 25 -45 m.s-1) are 

typically characterised by unstable atmospheric conditions (i.e., conducive for convection) as 
well as likely to include conditions favourable for convective organisation which can lead to 
increased severity of hazards (such as can be associated with strong wind shear between 
vertical levels (Taszarek et al. 2017)). Tornadoes are a special class of severe convective winds 

that are not considered here, including due to their very rare occurrence at a given location and 
their very small spatial scale, as well as noting that the design standards widely used in 
Australia do not intend structures to withstand the occurrence of a tornado. 

4.2 Summaries for physical processes 

Thunderstorm environments 

 Environments conducive for thunderstorm occurrence are often defined by atmospheric 

instability and moisture availability, while severe thunderstorms may also require other 
contributing factors such as vertical wind shear (that is when the wind changes in speed and/or 
direction with height) which can help organise the structure of a severe thunderstorm (Brooks 



  

et al. 2003; Taszarek et al. 2017). Convective instability depends on the vertical profile of 
temperature and moisture. Globally, the vertical temperature lapse rate (the rate of temperature 
decrease with height) is predicted to decrease/stabilise (increase/destabilise) into the future in 

the extratropics (tropics) due to different rates of warming in the lower atmosphere compared 
to the upper atmosphere (Bony et al. 2006), while atmospheric moisture content is predicted to 
increase by about 7% per degree of warming based on the Clausius-Clapeyron relation (IPCC 
2013). Vertical wind shear is predicted to decrease in the global mid-latitudes due to reduced 

zonal surface temperature gradients via the thermal wind relation (IPCC 2013; CSIRO & BoM 
2015). 

 Combining these factors through the use of  environmental thunderstorm diagnostics 
applied to model data, the frequency of thunderstorm environments has been projected to 
increase during the coming century in the United States (Trapp et al. 2007; Diffenbaugh et al. 
2013; Gensini et al. 2014; Seeley & Romps 2015) and Europe (Púčik et al. 2017), likely driven 

by increases in atmospheric moisture content resulting in increases to convective available 
potential energy. This is similar to results for eastern Australia during the warm season (Allen 
et al. 2014), noting various model uncertainties remain unquantified for the Australian region 
(e.g., a need for additional studies on variations in projections between a broader range of 

models and methods). 

Historical increases in the frequency of thunderstorm environments have been indicated 

by reanalysis data for some near-coastal parts of southeastern Australia, but with decreasing 
frequency overall for most regions of Australia (Dowdy 2020a), while noting those results were 
for thunderstorm activity in general rather than for the more severe thunderstorm events that 
can cause SCWs. Historical increases in thunderstorm environments have been reported for 

Europe (Rädler et al. 2018), although trends are less certain in North America, which may 
partially be due to increasing convective inhibition (CIN) offsetting increases in convective 
instability (Taszarek et al. 2020), a factor which limits thunderstorm development. A recent 
study indicates CIN projected to increase over most land areas in the future (Chen et al. 2020). 

Some regional projections studies in the United States have noted that CIN is likely to 
increase in a future climate, which could offset increases to available convective energy as 

discussed above (Hoogewind et al. 2017; Rasmussen et al. 2017). These changes could 
potentially combine to result in less frequent but more intense thunderstorm initiations, 
although a modern GCM ensemble has suggested that CIN could decrease on days with high 
amounts of instability (Diffenbaugh et al. 2013). In addition, CIN tends to be poorly resolved 

in large-scale dynamical models due to issues in representing fine-scale features of the vertical 
temperature profile (King & Kennedy 2019), such that future changes in this quantity represent 
a key uncertainty in thunderstorm projections. 

 Overall, there is low confidence in an increasing frequency of favourable environments 
for severe thunderstorms during summer in Australia, including based on results from other 
regions and the work of Allen et al. (2014) for projections of future changes in Australia (while 

noting that as based on a relatively limited range of modelling approaches). Significant 
uncertainties which remain include a lack of projections data for Australia  based on a broad 
range of modelling approaches, as well as the influence of CIN in a changing climate on the 
potential for severe thunderstorm occurrence. It is noted that favourable environmental factors 

are necessary, but not sufficient for thunderstorm occurrence (depending on initiating 
mechanisms) and also that additional factors are required for SCW occurrence. 

Severe convective wind environments 



  

 In addition to the thunderstorm environmental factors mentioned above, there are 
additional factors which can be conducive to SCW production, as well as noting different 
modes of thunderstorm systems that can be associated with severe convective winds (Smith et 

al. 2012). SCWs can be formed due to intense downdrafts within thunderstorms, with the 
downdrafts initiated due to the evaporative cooling of precipitation which causes cold, dense 
air to accelerate downwards, also aided by the weight of the precipitation itself. Downdrafts 
which reach the surface will transfer their momentum (as well as background momentum from 

higher up in the atmosphere) into the horizontal, causing severe wind gusts. This process 
depends on environmental factors including a relatively dry lower atmosphere combined with 
a steep temperature lapse rate as well as strong environmental wind speeds (Proctor 1989; 
Kuchera & Parker 2006; Brown & Dowdy 2021), although the relative importance of these 

may vary with convective mode (Doswell & Evans 2003). It follows that the variability of 
SCWs on climate timescales may be different to thunderstorms in general (Brooks 2013). The 
impact of climate change on individual convective hazards, such as severe surface winds, is 
highly uncertain (Allen 2018). However, recent work in Australia has suggested the potential 

for increases in the frequency of severe convective wind environments into the late century 
(Spassiani 2020), which is similar to historical findings for Europe (Rädler et al. 2018). There 
have also been future projections of severe convective wind speeds for Tasmania (Cechet et al. 
2012), applying a severe thunderstorm diagnostic to historical observed wind speeds. New 

projections of SCW environments are presented in Section 4.4 (with details on this method 
available in Brown & Dowdy (2021)). 

Thunderstorm initiation 

 Given an environment favourable for severe convection (i.e., thermodynamically 
unstable conditions), synoptic systems (extratropical cyclones, fronts, jets), atmospheric waves 
and orographic influences (sea-breezes and mountains) can help provide thunderstorm 

initiation. Projection studies tend to indicate that changes in synoptic initiation mechanisms 
such as mid-latitude extratropical cyclones and east coast low systems are not clear for 
Australia during the summer months (Catto et al. 2014; Pepler et al. 2016; Dowdy et al. 2019a). 
Cyclone-related convection is sensitive to changes in coastal sea surface temperature gradients 

(Chambers et al. 2015), noting that the Tasman Sea east of Australia is a region of accelerated 
ocean warming. Projections related to fronts are discussed in detail within Section 3, which 
indicates there is a considerable amount of uncertainty, with little or no change being the most 
plausible outcome. 

There is relatively little information on changes to orographic flows such as sea breezes; 
however, the strength of the sea breeze is strongly related to the land-sea temperature contrast, 

which is expected to increase into the future. One study found an increase in the frequency and 
intensity of sea breezes in Adelaide between 1955-2007 (Masouleh et al. 2019). Regional 
model simulations at 20 km resolution have been shown to provide a reasonable simulation of 
the sea breeze in the Mediterranean region (Drobinski et al. 2018), although convective 

parameterisations are less skilful in simulating sea breeze-related CIN (Birch et al. 2015). In 
summary, changes to thunderstorm initiation mechanisms in Australia during the summer are 
highly uncertain. 

Modes of variability – ENSO, IOD and SAM 

Details on modes of variability were provided in Section 3, including in relation to 
ENSO, IOD and SAM conditions in a changing climate. Building on that information, aspects 

specifically relating to SCWs are summarised here. 



  

Thunderstorm environments are not significantly related to ENSO conditions in general 
for Australia, apart from in northern Cape York Peninsula where they are more likely during 
La Niña than El Niño conditions (Allen & Karoly 2014; Dowdy 2016, 2020a). However, it is 

still feasible that ENSO may potentially modulate convective initiation mechanisms, such as 
by reducing cloud cover during El Niño conditions and enhancing the sea-breeze circulation in 
south-east Queensland which might increase the frequency of severe thunderstorm events 
(Soderholm et al. 2017) while noting considerable uncertainties around the role of ENSO on 

such processes. It is likely that there is not a strong relationship between ENSO and synoptic-
scale initiation mechanisms, including little or no relationship found between ENSO and fronts 
in southern Australia or between ENSO and ECLs in eastern Australia (Rudeva & Simmonds; 
Power and Callaghan 2016; Dowdy et al. 2019a). The relationship between ENSO and SCW 

environments is shown here in Figure 4.1a, suggesting very little relationship with ENSO in 
eastern Australia during the summer. In summary, the influence of ENSO on SCWs appears to 
be relatively weak while noting considerable uncertainties based on limited data and analysis 
to date, as is also the case for the relationship between ENSO and severe thunderstorm 

occurrence as well as between ENSO and synoptic initiation mechanisms (including fronts and 
cyclones in southeast Australia during summer). 

The IOD has previously been found to not have a notable influence on thunderstorm 
activity in Australia during summer including in southern and eastern Australia, as detailed in 
Dowdy (2020a), while noting that study was not specifically focussed on severe thunderstorms 
which could potentially have different characteristics to thunderstorms in general. The 

influence of the IOD on severe thunderstorms in Australia is currently uncertain based on a 
lack of previous analyses (Allen & Allen 2016), although the IOD may relate to extreme wind 
gust variability in general, with potential for higher occurrence frequencies during negative 
IOD phases (Azorin-Molina et al. 2021). The influence of the IOD on SCW environments is 

not significant during the summer in southern and eastern Australia (Figure 4.1c), broadly 
similar to the lack of correlation between the IOD and thunderstorm environments (Dowdy 
2020a), with some indication of a relationship in northeast regions. 

Similar to the IOD and ENSO, the influence of SAM on severe thunderstorms in 
Australia is largely uncertain. Although no consistent relationship has been found previously 
with thunderstorm environments (Dowdy 2020a), it is plausible that a positive SAM phase with 

reduced westerlies in eastern Australia during the summer may enhance moisture availability 
due to increased onshore flow in some regions, thereby increasing the frequency of favourable 
thunderstorm environments if such cases were to occur. In a negative SAM phase, the 
strengthening of background winds and a relatively dry lower atmosphere due to enhanced 

westerlies plausibly could increase the potential for an environment favourable for strong 
convective downbursts (albeit through a different mechanism to that described above for the 
positive SAM phase). Although it is not clear based on considering such physical processes as 
to which phase of SAM may be more likely to generate SCWs, it appears that the negative 

phase of SAM is more conducive than the positive phase for SCW environments based on the 
results in Figure 4.1b. In addition, enhanced westerlies and associated cold fronts during the 
negative phase of SAM (Rudeva & Simmonds, 2015) may increase the frequency of synoptic 
initiation mechanisms in some southern regions, and extreme wind gusts from station data have 

also been shown to be more frequent in this phase (Azorin-Molina et al., 2021). 



  

 

Figure 4.1: Correlations for summer between the number of days with a favourable severe 
convective wind environment and seasonally-averaged indicators of a) ENSO (Niño3.4 
index) b) IOD (Dipole Mode Index) and c) SAM (Marshall Index) for 1979-2018. The 
thunderstorm environments are calculated from the ERA5 reanalysis (Hersbach et al. 2020) 

based on the method of Brown & Dowdy (2021). Hatched regions indicate a significant 
relationship at the 95% confidence level (e.g., about 5% of the region could be expected 
hatched on average due to random chance alone). NINO3.4 and DMI data are attained from 
the NASA ESRL (https://psl.noaa.gov/gcos_wgsp/Timeseries/) while SAM data are from 

https://legacy.bas.ac.uk/met/gjma/sam.html. 

Other phenomena that can cause severe wind gusts 

Phenomena other than thunderstorms can produce severe wind gust speeds in some 
cases, including TCs in the more northern regions of Australia (with relatively little influence 
on central-east regions of Australia), as well as ECLs in near-coastal regions in the southeast 
and eastern of Australia while noting that the most damaging ECLs typically occur during the 

cooler months of the year (which reduces their relevance to this study's application here for 
summer). Long-term climate trends in the occurrence of TCs and ECLs and associated severe 
wind gusts during the summer months are briefly discussed here, including in relation to a 
changing climate, while noting that the primary focus of the analysis here is on severe 

thunderstorms for the purposes of this study. 

Fewer ECLs are projected in a warming world, but with higher confidence during the 

cooler months of year and more uncertain changes projected in the future occurrence of ECLs 
during summer (Dowdy et al. 2019a). This includes large uncertainties around the projected 
change in the intensity of intense ECLs during summer (i.e., those with extreme wind speeds). 

The topic of TCs and associated severe wind gusts has received widespread attention 
in Australia, including in relation to building codes and Australian structural design standards. 
Wang et al. (2013) reported that structures along the north-east coast of Australia may already 

be subject to higher gust speeds than the current design standard permits, with projected 
changes in severe wind gust speeds being sensitive to TC frequency and intensity change, 
particularly between Cairns and Townsville. 

There has been a significant downward trend in the occurrence frequency of  TCs 
observed in the Australian region (Dowdy 2014; Chand et al. 2019). Future projections based 
on global models are consistent with these findings in indicating a downward trend in the 

occurrence frequency of TCs in the Australia region (Bell et al. 2019). The currently available 
range of climate models have large uncertainties in their simulations to identify the more 
intense and damaging TCs (e.g., Category 4-5) such that there is considerable uncertainty in 



  

future changes in damaging wind speeds associated with them (Knutson et al. 2020; NESP 
2020). Observational studies indicate that for the east coast of Australia there has been no 
change in severe landfalling TCs (Chand et al. 2019), with an increase suggested by Holmes 

(2020) primarily since 2011 and mostly evident between Townsville and Rockhampton (noting 
that this is a relatively short time period for climatological assessments of rare events with large 
interannual variability such as these). A recent review that considered observations and future 
projections concluded that the frequency of Category 4 and 5 TCs may not change or increase 

slightly along with some poleward migration or little change in their spatial extent being 
plausible future outcomes, but with considerable uncertainties, as detailed in NESP (2020). 

To summarise for TCs, the rareness of category 4-5 TC events and relatively short 
historical time period for high-quality observations embeds a considerable degree of 
uncertainty on how climate change could influence TC-related wind gust risk on the northeast 
coast of Australia, especially at the regional level. By considering the available information 

including from modelling and observations, it can be said with low-medium confidence that 
little change or an increase are more likely than a decrease in the occurrence frequency of 
Category 4-5 TCs in the future for Australia, including for the east coast during summer. 

4.3 Summaries for historical information 

Observed trends 

Because of observational constraints, historical trends in the frequency and intensity of 

convective winds in Australia are unknown (Walsh et al. 2016; Brown & Dowdy 2019). This 
is largely due to spatio-temporal inhomogeneities in severe weather reports (Allen et al. 2011) 
and wind observations (Jakob 2010). It is also noted that convective phenomena occur on small 
spatial scales which are often missed by the observational network and make the detection of 

trends difficult. However, observed lightning activity, indicative of convective activity, 
indicates a potential long-term decrease in occurrence frequency during winter in southern 
Australia with little change during summer (Bates et al. 2015). 

More broadly, extreme winds from station data (defined as the 90 th percentile of daily 
maximum observations and including all wind-producing phenomena) have shown long-term 
decreases in frequency in Australia (Azorin-Molina et al. 2021), consistent with decreases in 

average wind gust magnitude (McVicar et al. 2008). These changes may be partly attributable 
to environmental factors such as vertical wind shear and thermal instability, although the exact 
causes are unknown. Further details on trends are provided in subsequent sections below, 
including for studies based on reanalyses. 

Model assessment 

GCMs, reanalyses and commonly used downscaling approaches available for Australia 

are unable to resolve the small spatial scales required for simulation of SCWs. Therefore, 
models are assessed here in terms of their ability to correctly represent the environments which 
are favourable for SCW occurrence, as well as the spatial and temporal variability of these 
environments. In addition, the ability of environmental model diagnostics to represent the 

variability of observed events is discussed. 

For Australia, GCMs are generally able to represent the spatial distribution of severe 

thunderstorm environments, although significant biases may exist for individual models in the 
seasonal and diurnal cycle, related to the representation of near-surface moisture (Allen et al. 
2014). In other regions, climate model representation of thunderstorm environments has been 
shown to vary greatly with individual models (Seeley & Romps 2015), while some models 



  

have been shown to replicate historical trends in environments for sufficiently large climate 
signals (Pistotnik et al. 2016). Individual model biases for severe thunderstorm environments 
may be addressed to some extent using a multi-model ensemble with bias correction. 

Reanalysis models used for historical analyses can reliably represent atmospheric 
environments based on observed sounding data (Brown & Dowdy 2021), although some key 

elements such as CIN may remained unresolved due to insufficient vertical resolution (King & 
Kennedy 2019). SCW diagnostics from these models can broadly represent the seasonal and 
diurnal cycle of measured wind events in Australia (Brown & Dowdy 2021). Diagnostics have 
also been shown to have a statistically significant correlation with the observed inter-annual 

variability of SCW events, which has also been found for other small-scale convective hazards 
in other regions, such as tornado events in the United States (Gensini & Brooks 2018). In 
addition, environmental model diagnostics have been shown to explain most of the variability 
in convection resolving model thunderstorms (Hoogewind et al. 2017). 

In summary, atmospheric models which use historical observations (reanalyses) can 
reliably represent thunderstorm environments, and diagnostics intended to identify SCW 

environments are able to broadly represent the variability of observed events. Significant biases 
exist in the representation of these environments within individual climate models, although 
biases may be somewhat addressed using multi-model ensembles with bias correction. 

Trends in severe convective gust environments 

Historical trends in the frequency of atmospheric environments favourable for SCWs 
are assessed here using the ERA5 reanalysis (Hersbach et al. 2020). As described in sections 

above, environmental approaches such as this are common for assessing convective hazards in 
model data, including for long term trends (Rädler et al. 2018; Taszarek et al. 2020).  

Figure 4.2 presents historical summertime trends from 1979-2018, using four different 
diagnostics for environment identification. This includes one diagnostic which has been 
developed by Brown & Dowdy (2021) using statistical methods (referred to herein as the 
Brown Dowdy Statistical Diagnostic: BDSD, as well as three other diagnostics that have been 

used in a range of previous studies and for severe weather forecasting purposes. The BDSD 
was shown to provide a good representation of spatial and temporal variability in observed 
convective wind events as compared to other commonly used environmental diagnostics for 
severe thunderstorm environments, with further details on these diagnostics and analysis 

available in Brown & Dowdy (2021).  

The BDSD indicates little to no long-term trend in occurrence frequency for southeast 

Australia (Figure 4.2). There are some areas of decreasing frequency over inland regions, 
broadly consistent with previous results for the state of South Australia noting some fine-scale 
regional variations (Brown & Dowdy, 2019). These areas of decreasing frequency for BDSD 
also appear when considering the other diagnostics shown in Figure 4.2. These alternative 

diagnostics also indicate some areas of increasing frequency off the south -east coast. That 
increase is broadly consistent with previous analysis of thunderstorm environments indicating 
positive trends in this far-southeast region with negative trends in general for other regions 
including northern Australia (Dowdy 2020a). 

The BDSD is specifically tailored to SCW environments and designed to represent a 
broad range of relevant physical processes (e.g., a broader range of processes than is the case 

for the other diagnostics shown in Figure 4.2). However, the other diagnostics are also 
considered in this analysis for general completeness, as well as noting the considerable 
uncertainties around the use of any single method for analysis of long-term climate trends in 
SCWs based on currently available knowledge. 



  

In summary, this trend analysis based on reanalysis data indicates relatively little 
change throughout most of southeast Australia including based on the BDSD statistical method, 
with a potential increase indicated for some near-coastal regions in the far southeast in near-

coastal regions from the full set of diagnostics more broadly (while noting low confidence in 
general). Decreases are indicated for most northern and eastern regions, with increases also 
indicated for some southwest regions of Australia. 

 

Figure 4.2: Long-term changes in the frequency of days with favourable SCW environments 
during the summer, based on ERA5 reanalysis data. Changes are based on four diagnostics, 
(a) BDSD, (b) total totals (T-Totals), (c) severe hazards in reduced buoyancy environments 

(SHERBE) and (d) the derecho composite parameter (DCP). The change in the mean number 
of days per season is shown, calculated as the difference from the period 1979:1998 to the 
period 1999:2018. Significant changes are represented by hatching based on Student’s t-test 
with a 90% confidence level (two-tailed). 

4.4 Summaries for projected changes 

Global climate models 

As discussed in sections above, there is very limited information available on 
projections of SCWs in Australia. Here we use various environmental diagnostics (as used to 
assess historical trends in Section 4.3) applied to future projections data from a bias-corrected 
12-member CMIP5 ensemble (Taylor et al. 2012). 

Future changes in the frequency of environments are presented for four diagnostics 
relevant for convective winds between 1979-2005 and 2081-2100, presented for the summer 

months December to February (Figure 4.3). These diagnostics are the same as those used in 
Section 4.3, again noting that the BDSD (Figure 4.3a) is potentially most suitable based on 
representing the variability of historical events (Brown & Dowdy 2021). The BDSD generally 
indicates increases in the frequency of environments across Australia, although little or no 

change may be more plausible for some near-coastal regions in eastern Australia and Tasmania. 
Increases are also generally indicated for two of the other three diagnostics (SHERBE and 
DCP), while decreases are indicated by the total totals diagnostic. The diagnostics which 
indicate increasing frequency in environments are largely driven by increasing moisture 

content in the lower atmosphere, while the decrease for total totals is driven by a stabilisation 
of the temperature lapse rate. Increasing moisture and decreasing lapse rate are expected in the 



  

future (see Section 4.2) and have opposite effects on the potential for convection to occur. 
These competing factors introduce uncertainty for future projections of SCW environments as 
represented by these diagnostics, as it is unclear whether changes to the atmospheric lapse rate 

or moisture will be more influential. 

 

Figure 4.3: Projected future changes in the frequency of favourable SCW environments 
during summer shown as (a-d) a change in the number of days per season and (f-i) percentage 
changes. The changes are calculated from the period 1979:2005 to the period 2081:2100 

based on a high emissions pathway (RCP8.5) using an ensemble of 12 GCMs. The ensemble 
median response is shown. Changes where at least 10 (out of 12) models agree on the sign of  
change, as well as where the seasonal mean number of environments in the historical period 
is greater than one, are shown with hatching. These results are intended for broad-scale 

guidance on some of the plausible changes that could occur for SCW occurrence in a warmer 
world, including on direction of change and estimated range of potential future change as 
represented by these metrics. 

Convection-permitting modelling 

Convection-permitting modelling has been used in a relatively limited number of 
studies as an alternative to the large-scale environmental approaches commonly used for 

projections of severe thunderstorms and associated hazards. Although being very 
computationally expensive, this type of modelling can have the advantage of simulating some 
factors which are more challenging to represent in environmental approaches. This can 
potentially include better simulation of  CIN and some triggering mechanisms such as the 

influence of localised orographic features, as well as potential for improved representation of 
some other aspects of thunderstorm characteristics (e.g., potentially providing some estimates 
of intensity and morphology in some cases). 



  

Leslie et al. (2008) used a convection-permitting model to dynamically downscale 
climate model data in order to study potential future changes to hailstorms in Sydney, with 
results suggesting an increase in the number of  large hail events but with little change to the 

total number of hail events. Although there have not been any subsequent studies which have 
built on those results for Australia, modelling in the United States has found similar increases 
for large hail with little change or decreases for moderate- and smaller-sized hail (Trapp et al. 
2019; Raupach et al. 2021). There have also been modelled increases for the frequency of 

hazardous convective events in general without being specific on the type of hazard 
(Hoogewind et al. 2017). Elsewhere, convection-permitting modelling in the United Kingdom 
has suggested an increase in the intensity and frequency of convective rainfall (Kendon et al. 
2017). However, more modelling at these fine scales, including with a greater number of 

driving GCMs and covering longer periods needs to be done to build on these results, including 
with a focus on severe thunderstorms in Australia's changing climate. 

A limited amount of convection-resolving modelling was produced for this project by 
applying the BARPA modelling framework using around 4 km horizontal grid spacings, 
covering a reduced mid-latitude domain including the capital cities of Sydney, Adelaide, 
Melbourne and Hobart (as well as noting the availability of BARPAC-T using a 2 km grid 

spacing for a region around the tropical east coast of Australia). Initial results suggest that this 
convection-resolving approach which includes downscaling the ACCESS1-0 GCM 
(BARPAC-M) can provide a better representation of severe wind gusts relative to the 
convection-parameterising BARPA configuration (BARPA-R) that has a 12-km horizontal 

grid spacing. For example, analyses of BARPAC-M and BARPA-R data are presented here 
and compared with daily maximum wind gust observations from station data at 12 locations 
(Figure 4.4a,b), indicating broadly similar results for BARPAC-M to those based on 
observations with somewhat lower wind speeds for the upper tail in BARPA-R. These 12 

locations are from observation stations in the BARPAC-M region that have a reasonable quality 
and length of wind data suitable for climate analysis, such as discussed in Brown & Dowdy 
(2021). 

Results also suggest that the BARPAC-M model under a future climate scenario (2039-
2059) produces stronger 20-year maximum wind gusts when considering all land points in the 
domain relative to the historical run (1985-2005; Figure 4.4c). These results for future changes 

may not be statistically significant due to the small sample size of extreme gusts and noting 
various uncertainties from the modelling approaches (including potential variation between 
different host models, time periods, emission pathways, etc.), the gust origins (i.e., synoptic or 
convective, as well as potential for different types of convective modes) or spatial variations. 

However, they demonstrate that convection-resolving approaches may provide additional 
insight into future changes in extreme events such as SCWs. In particular, these initial results 
indicate that increased intensity of SCWs in the future is one plausible outcome, while noting 
the considerable uncertainties discussed above and the limited data currently availability for 

convection-permitting modelling of future simulated climates. 



  

 

Figure 4.4: Modelled wind gust speed vs observed wind gust speed, presented for different 
quantiles of daily maximum wind gusts at 12 locations. Results are presented from the 

convection-permitting mid-latitude model run of BARPAC-M (a) as well as from its host 
model for the regional configuration of BARPA-R (b). As one example of projected future 
changes based on BARPAC-M, the 20-year maximum wind gust is shown under historical 
(1985-2005) and future (2039-2058) conditions, with the blue line representing the quantile-

matching of wind speeds between those two periods using data for individual grid points (land 
only). The dotted line represents no change from historical to future, with values below and 
above that line representing decreases and increases, respectively , in the occurrence 
frequencies of wind speeds in the ranges shown. 

 

 

4.5 Lines of Evidence Table 

Table 4.1: Lines of Evidence Table for severe convective winds (SCWs), with a focus on 
summer in the southeast and east of Australia. The degree of influence is listed in black, 
followed by whether this information implies an increase (red), decrease (blue) or little 
change (black) in the occurrence of SCWs, as well as by increased uncertainty (purple) in the 
direction of change. The rows of information are not in order of importance. 



  

4.6  Projections Likelihood Information 

The lines of evidence table (Table 4.1) shows high uncertainty in observed trends and 
projected future changes for SCWs, with additional uncertainties around projected changes of 
related physical processes for extreme winds during summer in the southeast and east of 
Australia. A considerable amount of this uncertainty arises from the small spatial scales 

associated with the physical processes that lead to the occurrence of severe thunderstorms and 
the SCWs they can cause, resulting in a limited ability to model these events based on current 
approaches (while noting some potential improvements using convection-permitting 
modelling). Uncertainty also arises from the lack of suitably homogenous observations for 

long-term climate trend analysis. 

Some insight on plausible future changes is provided by the environmental diagnostic 

approach (i.e., large-scale diagnostics). Calibrated model projections from an ensemble of 
GCMs indicate a range of plausible changes (including increases and decreases) in the 
frequency of days with favourable conditions for SCWs, with ensemble median estimates of a 
7% and 8% increased frequency for southern Australia and eastern Australia, respectively, 

Physical processes and their measures 

Thunderstorm 

environments (not 

specific only to 

SCWs) 

Medium-Strong association. More favourable environments in parts 
of southeast (low confidence) with increasing moisture content (high 
confidence), as well as decreasing atmospheric lapse rate (medium-
high confidence) and vertical wind shear (medium confidence). 

SCW environments Strong association. Many uncertainties and few studies to date. 

Thunderstorm 

initiation 

Strong association. Uncertain changes (relating to extratropical 

cyclones, fronts, jet-streams, atmospheric waves, orographic flows 
and convective inhibition). 

ENSO Weak association. Uncertain future change. 

IOD Weak association. Uncertain future change. 

SAM Moderate association in eastern Australia. Projected shift towards 

positive SAM. 

Additional factors 

including 

phenomena such as 

cyclones 

Moderate influence of TCs in subtropics, as well as ECLs in coastal 
east and southeast, for damaging winds in summer. Uncertain 

expansion of TC range. Fewer TCs, but potentially more intense on 
average. Uncertain projections for summer ECLs, including 
intensity and associated extreme winds. 

Assessment for historical period 

Model assessment SCW environments can be simulated reasonably well by calibrated 
climate model ensembles, while noting many other uncertainties. 

Historical trend in 

SCW environments 
Little change or fewer through inland eastern Australia, small region 
of potential increase in south-east (low confidence, with uncertainty 
in modelling methods and limited observations). 

Historical trend in 

observed SCWs 

Uncertain due to observational constraints. 

Projected future change  

GCMs More SCW environments for southern and eastern Australia (low 
confidence due to uncertainty in model diagnostics). 

RCMs and 

convection-

permitting models 

Some indication of a potential increase, but with very limited 
available data and analysis to date (highlighting a need for more 
research). 



  

based on the supercluster regions defined in CSIRO & BoM (2015). Confidence in this result 
is relatively low (i.e., much lower than for extreme temperature projections from the previous 
section) and spans a wide range of plausible change indicated by the different diagnostics and 

individual GCMs (e.g., 10th and 90th percentile estimates based on a 48-member model-
diagnostic ensemble provided in Table 4.2). Increasing environmental frequency based on 
median estimates agrees with expected changes to thunderstorm environments in Australia 
based on physical process understanding (Low Confidence), including increased atmospheric 

moisture content in a warmer world, although decreases are also plausible due to decreasing 
atmospheric lapse rates (as indicated by one of the diagnostics in Figure 4.4: Total-Totals) as 
well as noting uncertainties relating to factors not included in these environmental diagnostics 
(e.g., initiation mechanisms and convective inhibition). 

The results based on environmental diagnostics are broadly similar to  the initial results 
from the convection-permitting model runs of BARPAC-M, which indicated a small increase 

in the upper tail of wind gust speeds in the future. However, further research is required to 
examine how well these extremes can be simulated in the fine-scale model data provided by 
convection-permitting dynamical downscaling modelling approaches. 

In summary, an increased occurrence frequency of severe winds is indicated in the 
southeast and east of Australia during summer but with low confidence, noting that both 
increases and decreases are plausible outcomes based on the full range of lines of evidence 

considered here. The estimated range from the environmental modelling (Table 4.2) is intended 
to be useful for some planning and risk management purposes. The central estimates of the 
model ensemble could also be useful in some cases, showing that the most likely projections 
for the future is little change or a small increase in frequency (Low Confidence). 

Table 4.2: Projected percentage changes in severe convective wind environment frequency 
(days per season) during summer, based on 12 CMIP5 GCMs, as well as using four 
diagnostics (Brown & Dowdy 2021). This results in a 48-member ensemble, with the median, 
10th and 90th percentile changes shown. The changes are calculated from the period 

1979:2005 to the period 2081:2100 based on a high emissions pathway (RCP8.5), averaged 
over Eastern and Southern Australia (using the regions defined in CSIRO & BoM (2015)). 

  

NRM super-cluster region Median change 10th percentile 90th percentile 

Eastern Australia 8% -56% 33% 

Southern Australia 7% -49% 45% 



  

5. Method application: extreme bushfire weather conditions 

5.1 Introduction 

Bushfires can be considered as a form of compound event given the range of factors 
that influence their occurrence, including based on the combined range of weather factors that 
can influence their occurrence (from various near-surface conditions to higher-level 

atmospheric processes including convection through the troposphere and into the stratosphere 
in some extreme cases). In addition to the combination of various weather conditions, the 
occurrence of dangerous bushfires can also be influenced by various other factors including 
vegetation conditions (such as relating to fuel load and type) and ignition sources (such as 

associated with human activities or with lightning), some of which can be challenging to 
incorporate into integrated frameworks for modelling of compound events (e.g., given the 
current limitations in coupled fire-atmosphere-vegetation climate modelling). Although there 
are very large uncertainties around modelling fuel conditions and ignition sources including in 

a changing climate, these other factors are also considered in this section, while noting that the 
primary focus of this analysis is on dangerous weather conditions for bushfires.  

Bushfire weather conditions are often represented by indices as a useful way of 
combining various weather conditions known to influence fire behaviour (e.g., near-surface 
humidity, wind speed, temperature and rainfall). Examples of such indices include the Forest 
Fire Danger Index (FFDI) commonly used in Australia (McArthur 1967) as well as the Fire 

Weather Index (FWI) originally developed in Canada but now widely used throughout the 
world (Van Wagner 1987; Dowdy et al. 2009; Field et al. 2017). The FFDI and FWI are both 
based on near-surface measure of humidity, wind speed, temperature and rainfall, with a 
broadly similar order of sensitivity to these four individual weather conditions (Dowdy et al. 

2009). Indices have also been developed for grass fires, such as the GFDI (McArthur 1967), 
while noting that grass fires were not identified by the energy sector stakeholder for this 
research as a significant hazard. Indices are also available for various other fuel types including 
a multi-index system currently in development for Australia (known as the Australia Fire 

Danger Rating System: AFDRS). Indices such as the Continuous-Haines index (C-Haines) are 
based on conditions at higher levels of the atmosphere and can be useful for indicating risk 
factors associated with the occurrence of extreme fire events (including very dangerous fires 
that generate thunderstorms in their fire plumes known as pyrocumulonimbus or pyroCb 

clouds) (Mills & McCaw 2010; Dowdy & Pepler 2018; Di Virgilio et al. 2019; Dowdy et al. 
2019b). Many of the more disastrous fire events in recent decades have been associated with 
the occurrence of pyroCb events, including for the Canberra fires in 2003 and the Black 
Saturday fires in 2009 as well as during the 2019/2020 Black Summer fires (Fromm et al. 2006; 

Cruz et al. 2012; McRae et al. 2013; Dowdy et al. 2017; Australian Government 2020). 

The SMPL is applied here for extremely dangerous fire weather conditions during 

summer in the southeast and east of Australia, considering some similar aspects to those 
detailed in Sections 3 and 4. However, in contrast to the application of this method for 
individual weather conditions such as extreme temperature (Section 3) and extreme wind speed 
(Section 4), the combined influence of multiple different weather conditions known to 

influence fire behaviour is considered here. Factors considered include near-surface weather 
variables such as humidity, wind speed, temperature and drought measures relating to fuel 
availability, as well as other atmospheric phenomena such as the influence of synoptic systems, 
mesoscale convective processes as well as large-scale atmospheric and oceanic modes of 

variability. Although the focus here is on fire weather, other factors relating to bushfire 
occurrence are also discussed including ignition and fuel conditions. 



  

5.2 Summaries on physical processes 

Individual weather factors 

Weather conditions such as humidity, wind speed and temperature can influence fire 
behaviour in Australian forests (McArthur 1967), with the conditions changing as our climate 
warms (CSIRO & BoM 2015; BoM & CSIRO 2020). As detailed previously for extreme 

temperature (Section 3), climate change is increasing the frequency and severity of extreme 
heat events (high confidence), including for individual days as well as for more prolonged 
events (e.g., heatwaves). This is based on many lines of evidence including from observations, 
modelling and physical processes understanding. 

Observed changes in humidity across Australia are not well described by linear trends 
over time, but most sites across Australia have shown long-term increases in atmospheric water 

vapour concentrations (i.e., including measures of this such as dewpoint temperature and 
specific humidity), with the largest increases in the interior of the continent and some eastern 
regions (Lucas 2010). Increased temperatures lead to an increase in the moisture holding 
capacity of the atmosphere (of about 6-7% per degree of warming based on the Clausius-

Clapeyron relation), which results in increased water vapour pressure in general (i.e., increased 
specific humidity). However, it is relative humidity (or vapour pressure deficit) that is 
important for fire behaviour including given its influence on fuel moisture, noting that relative 
humidity depends on both water vapour pressure as well as air temperature. As some regions 

warm faster than others (e.g., land regions warm more than ocean in general) there can be 
differences in the relative humidity for a given change in water vapour content. In general for 
Australia, a decrease in relative humidity is projected to occur, including during summer with 
CSIRO & BoM (2015) listing medium confidence for this (as compared to high confidence for 

winter and spring), while noting some finer-scale modelling from RCMs indicates little change 
in some regions (Clarke & Evans 2019). 

 A small decrease in wind speed has been observed for Australia in general, while 
noting considerable uncertainties relating to data availability and homogenisation (Azorin-
Molina et al. 2021). There are also considerable uncertainties around model data for wind 
speed, including due to significant negative bias in modelled wind speed during high wind 

conditions (in general for most models). Many factors such as boundary layer mixing, form 
drag for sub-grid orography and surface properties can influence wind estimation over land. 
The representation of the stable boundary layer remains challenging due to the multiplicity of 
physical processes (including turbulence, radiation, land surface coupling and heterogeneity, 

turbulent orographic form drag) involved and their complex interactions, such that models 
typically suffer biases in wind speed under such conditions. Projections for Australia indicate 
little change or a small decrease during summer in mean wind speed, with considerable 
variation between different models: some show increases and others show decreases, typically 

within about +/-5% in magnitude (CSIRO & BoM 2015). Further details on processes that can 
cause strong winds are provided below in this section (in relation to synoptic-scale phenomena 
such as fronts and blocking highs). 

Drought and fuel moisture 

Drought conditions can lead to low moisture content in vegetation that increases the 
availability of fuel for bushfires. Climate change is expected to increase the intensity, frequency 

and duration of meteorological drought (i.e., a measure of drought based only on rainfall 
deficit), including based on longer periods with little rainfall as detailed in CSIRO & BoM 
(2015). It is also noted that there are various other ways that drought conditions can be defined 
including agricultural drought measures that can include the influence of other weather 



  

conditions (e.g., temperature, humidity, wind as well as evapotranspiration) in addition to 
rainfall. 

Fire weather indices such as the FFDI and FWI include drought measures in their 
formulation that are more similar to measures of agricultural drought than meteorological 
drought in that they include the influence of other weather conditions in addition to rainfall. 

For example, temperature is used together with rainfall as input to the Keetch-Byram Drought 
Index (KBDI) (Keetch & Byram 1967) as often used as an input for the Drought Factor used 
in the FFDI (noting that indices relating to soil moisture such as KBDI are used for the Drought 
Factor to indicate a proxy estimate of fuel availability based on moisture content). In contrast,  

relative humidity, temperature and wind speed are used for the multiple different fuel moisture 
measures that the formulation of the FWI System includes (Van Wager et al. 1974). 
Consequently, in addition to rainfall and meteorological drought a broader range of factors can 
be considered when examining potential future changes to fuel moisture content. 

As noted in the section above on individual weather factors, mean temperatures as well 
as the frequency of extreme temperature events are projected to increase in the future with high 

confidence, together with a general decrease in relative humidity, as well as little change or a 
small decrease in wind speed. Considering these factors together with the projected increase in 
meteorological drought (including increased frequency, intensity and duration) suggests a 
likely increase in the frequency of very dry fuel conditions. However, there are considerable 

uncertainties around projected changes in different types of drought as well as fuel moisture 
responses to climate change, including as noted in Section 3 in relation to soil moisture 
projections. Regional models may add value for some of these factors (e.g., more detail on land 
surface processes, rainfall and orographic dependencies). 

Combined weather conditions 

Fire weather indices provide a useful way to combine a range of weather conditions 

known to influence fire danger. The index values are typically calculated for each individual 
time step (e.g., day) using data for each weather factor obtained from a single  model (as is the 
case for all results and references described in this report). This ensures the coherence of these 
individual weather factors when applied for individual time steps from a single model. After 

the fire weather index values have been calculated for each model, the ensemble statistics and 
other derived products can then be produced, rather than using ensemble average values of 
individual weather conditions as input to calculate the fire weather indices as that will lose the 
coherence of individual weather factors (including noting the importance of this for 

representing extremes of the fire weather index values). Similarly, the weather data should be 
calibrated prior to calculating the fire weather indices, rather than calibrating the resultant index 
values, to keep the relative balance of each weather factor correct for the index formulation. 

The Forest Fire Danger Index (FFDI) is commonly used in Australia as a general 
indicator of regional weather features associated with dangerous fire conditions. It shows broad 
similarities to some other fire weather indices used around the world such as the FWI including 

for its sensitivity to different input ingredients (including being most sensitive to wind speed 
followed by humidity and then temperature) (Dowdy & Mills 2012). Observational studies 
have identified an increase in both the average FFDI and the frequency of high FFDI days over 
much of southern Australia, particularly during the spring months, contributing to a 

lengthening of the fire season (Dowdy 2018, Harris & Lucas 2019). These trends are 
attributable at least in part to anthropogenic climate change, including as they combine several 
different weather variables of which some (temperature) can be more easily attributed to 
climate change than others (humidity and wind). Although a significant climate change signal 



  

is able to be demonstrated already based on observations (Dowdy 2018; Harris & Lucas 2019), 
the attribution of individual fire events to climate change is more challenging while noting one 
recent study that has done this for the Black Summer of 2019/2020 (van Oldenborgh et al. 

2021). 

Projected changes in extreme daily FFDI were recently produced for Australia drawing 

on a comprehensive range of modelling techniques, comprising an ensemble of projections 
based on GCM output as well as two ensembles of projections based on dynamical downscaling 
using regional model approaches (Dowdy et al. 2019b). Those projections indicate an increase 
in the number of days with very high fire weather conditions (based on FFDI above 25) as well 

as an increase in the number of days with FFDI above the 95 th percentile for 1990-2009), noting 
lower agreement between models in some parts of eastern Australia. Similarly, future increases 
were also projected for the number of days with FFDI above 50 and for the number of days 
with FFDI above the 99 th percentile for 1990-2009 (Dowdy 2020b). In addition to the 

projections presented in those studies, plausible variation above and below such values is 
indicated from previous studies based on different metrics and different modelling approaches 
using FFDI. For example, relatively large increases have been derived using monthly mean 
climate changes from 3 GCMs to scale observations and calculate changes in severe fire 

weather days with FFDI > 50 (CSIRO & BoM 2015), as well as other studies that indicate less 
confidence in large increases in FFDI in the future (Clarke et al. 2016).  

Projections of future climate have also been produced based on other fire weather 
indices, including a global study that used the FWI (Abatzoglou et al. 2019) and reported no 
emergent climate change signal in general for Australia based on the methods they presented. 
Although increases were projected in some regions they were not statistically significant at a 

high confidence level noting the high interannual variability that can occur in weather and 
climate conditions in Australia (such as due to the influence of large-scale modes of variability 
including ENSO, discussed in sections below). Examples such as this based on FWI with little 
change indicated, together with the range of FFDI projections from various studies noted 

above, show that considerable differences can occur between different studies and highlight 
the benefit of considering a broad variety of datasets, methods and studies (as is a goal of the 
method applied here). 

Very dangerous types of fire events have also been examined in relation to climate 
change, including extreme pyro-convection conditions (i.e., associated with thunderstorms that 
form in fire plumes: pyroCbs). These occurred for the Black Saturday fires in 2009 and the 

Canberra fires in 2003 fires as well as many examples during the 2019/20 Black Summer fires 
(Fromm et al. 2006; McRae et al. 2013; Dowdy et al. 2017; Australian Government 2020). 
Significant trends have been found for extreme pyro-convection risk factors including based 
on historical data (Dowdy & Pepler 2018) and future projections (Di Virgilio et al. 2019; 

Dowdy et al. 2019b). These studies indicate increased risk factors for parts of southern and 
southeast Australia as well as decreases in some cases for other regions, including in parts of 
eastern Australia. However, a range of uncertainties around future changes in convective 
systems is also noted, such as the contrasting roles of increasing water vapour content and 

decreasing lapse rates that can have various influences on risk factors associated with fire 
behaviour and/or potential for convective systems to develop (with details also available in 
Section 4 around uncertainties in future projected changes for convective systems). 

Subtropical ridge; Blocking / high pressure systems; Cold fronts 

Details on various phenomena including the subtropical ridge, blocking highs and cold 
fronts were provided previously (see Section 3), including observed and projected changes 



  

during summer, as well as strengths and limitations of different modelling approaches. 
Building on that information for those phenomena, details specific to fire weather conditions 
are provided in this section. 

The projected increase in the strength of the subtropical ridge could potentially act to 
exacerbate the severity of some fire weather events in the future, especially in parts of southern 

Australia. For example, the high-pressure systems that characterise the subtropical ridge can 
lead to descending dry air and clear skies associated with hot and dry conditions. High pressure 
systems can also circulate air around inland Australia in some cases, as a dynamical mechanism 
contributing to the build-up of extremely hot and dry air, while noting it is not currently known 

if this process would change in the future. 

Blocking (quasi-stationary) highs over the Tasman Sea can advect hot and dry air from 

inland regions towards the more densely populated regions closer to the south and east coasts. 
They can also interact with approaching cold fronts from the south which can intensify wind 
speeds and contribute to increased severity of fire weather conditions in some cases. In 
particular, the most severe fires in southeast Australia are typically associated with a strong 

cold front approaching from the southwest, often with a high in the Tasman Sea, producing 
very hot, dry and strong northwesterly winds in southeast Australia corresponding to very 
dangerous fire weather conditions (Hasson et al. 2009; Reeder et al. 2015; Dowdy et al. 2017). 
The passage of the front (or pre-frontal trough) comprises shifts in wind direction which can 

change the direction of fire movement, i.e., the northern flank can become the new head fire 
leading to rapid increases in the rate of area burnt. This can cause significant challenges for 
firefighters (Cruz et al. 2012). While future projections of blocking and cold fronts are 
generally uncertain, as detailed in Section 3, one study based on the older generation of climate 

models (CMIP3) found a projected increase in frequency of such extreme events from 0.5 to 
1-2 per year by the end of the 21st century (Hasson et al. 2009). 

Modes of variability – ENSO, IOD and SAM 

Details on modes of variability including ENSO, IOD and SAM in a changing climate 
were provided in Section 3. Building on that information, aspects relating to fire weather 
conditions are summarised here. 

A recent paper summarised the seasonal influences of these three modes of variability 
on average fire weather conditions in Australia (Harris & Lucas 2019), finding a strong 

influence from ENSO during spring and summer in the east, from IOD during spring in the 
southeast and east and from SAM during spring and summer in the east (with negative SAM 
associated with more severe fire weather conditions such as in 2019/20). This is broadly similar 
to various other studies that have also examined some of those aspects (Dowdy 2018; Abram 

et al. 2021). Out of 21 significant bushfire seasons since 1950 in south-east Australia, 11 were 
preceded by a positive IOD (Cai et al. 2009). In Victoria, particularly spring, a positive IOD 
contributes to lower rainfall and higher temperatures, exacerbating dry conditions and 
increasing the fuel availability leading into summer. 

Sudden stratospheric warmings can also influence fire weather conditions in Australia, 
including hotter and drier conditions for parts of eastern Australia during spring and early 

summer which could also influence fuel moisture content during summer to some degree, 
noting that the influence of such events can also be indicated through the SAM index (given 
the association between polar stratospheric vortex conditions and measures of the Southern 
Annular Mode) (Lim et al. 2019; 2021). The influence of climate change on sudden 

stratospheric warming events is currently unknown. 



  

Although the relationships between fire weather and modes of variability (including 
ENSO, IOD and SAM conditions) have been examined in numerous previous studies (such as 
those discussed in this section), this has not previously been examined in detail for more 

extreme measures of fire weather, such that some new analysis on that is shown in Figure 5.1. 
Correlations are presented between the number of days with FFDI > 99.5 th percentile and 
various modes of variability (using indices representing ENSO, SAM and IOD) showing 
broadly similar features to those for average values of fire weather measures as described based 

on previous studies mentioned above. In particular, fire weather conditions in the southeast and 
east of Australia during summer show relationships with ENSO and IOD (significant positive 
correlations), with SAM having some influence in central east regions (positive correlation) 
but to a lesser degree than ENSO and IOD. There are some regions of negative correlation for 

the SAM results in the more inland parts around central-east and southeast Australia, but those 
correlations are not statistically significant. It is also noted that the influence of sudden 
stratospheric warmings (relating to negative SAM conditions to some degree) can be associated 
with more severe fire weather conditions in central eastern Australia during spring (Lim et al. 

2019), with this not expected to be represented in these results focussed on summer. 

 

Figure 5.1: Correlations for the number of days with FFDI > 99.5th percentile during summer 

and measures representing different modes of variability including ENSO (using the 
NINO3.4 index), SAM (using the SAM index) and IOD (using the DMI index). These 
correlations are all based on the period from 1979 to 2019, using one value for each summer 
period (DJF). NINO3.4 and DMI data are attained from the NASA ESRL 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/) while SAM data are from 
https://legacy.bas.ac.uk/met/gjma/sam.html. Pearson's correlation coefficient, r, is shown 
with stippling corresponding to statistically significant values at the 95% confidence level (2 -
tailed). 

Additional factors- lightning ignitions as well as fuel load and type 

Although the focus here is on extreme fire weather conditions, a brief summary is 

provided here to note some of the other conditions that are important for the occurrence of 
bushfires. This includes ignition sources as well as vegetation-related factors such as fuel load 
and type. 

Lightning was the ignition source for many of the largest and most damaging fires 
during the 2019/2020 summer fire season in southeast Australia (Australian Government 
2020). In addition to individual summers, lightning has been found to cause most of the total 

area burnt when averaged over many fire seasons in southeast Australia (Dowdy & Mills 2012) 
with lightning-ignited fires also being response for a large amount of the area burnt during the 
Black Summer (Australian Government 2020). Human-caused ignitions are also a key cause 



  

of fires in Australia, noting that projected future changes in that are highly uncertain. Given 
the occurrence of lightning, the chance that it will cause a sustained ignition and develop into 
a bushfire is strongly dependent on the amount of rainfall that accompanies it, leading to the 

concept of 'dry lightning' as an important natural ignition source for bushfires (i.e. , lightning 
that occurs without significant rainfall). There is some indication of an increased frequency of 
dry-lightning in some parts of southeast Australia in recent decades as well as decreases in 
some other regions mor broadly for Australia (Dowdy 2020a). However, projections of future 

changes in the occurrence of dry-lightning is a key knowledge gap in general for Australia, 
affecting our understanding of potential changes to bushfire ignition and bushfire occurrence 
throughout Australia. 

Changes in vegetation characteristics including amount (fuel load) and type can also 
influence fire hazards throughout Australia, noting that this is particularly important for 
grassfires in the more northern and central regions of Australia (McKeon et al. 2009). There 

are potential increases in fuel loads for various vegetation types associated with projected 
increases in carbon dioxide concentrations, often referred to as the 'fertilisation effect' (Clarke 
et al. 2016), where higher concentrations of atmospheric carbon dioxide promote vegetation 
growth (Donohue et al., 2013). Global drylands have generally been greening over recent 

decades and the fertilisation effect has been identified as a causal factor in this greening (Burrell 
et al. 2020). Consequently, an increase in some fuel-related fire risk factors may be considered 
more likely than a decrease, while noting considerable uncertainties given the relatively limited 
ability of current climate models to accurately simulate future changes in some risk factors 

relating to fuel characteristics. Similarly, there are also large uncertainties around potential 
future changes in fuel type, such as whether or not vegetation may shift to types that tend to 
burn more frequently during this transition period to a warmer world, with no studies currently 
available on this topic for Australia. 

5.3 Summaries for historical information 

Observed trends 

 Early studies on fire weather trends in Australia based on FFDI were not able to separate 
the influences, if any, of climate change as different to natural variability such as concluded by 
Clarke et al. (2013). Using a longer time period, different methods and a gridded analysis based 
on observations, a statistically significant increase in FFDI has since been documented, 

particularly during spring and summer in many parts of southern and eastern Australia, with 
this being attributable at least in part to human-caused climate change including increased 
temperatures and associated changes in relative humidity and fuel availability indicators 
(Dowdy 2018). Similar results were also reported based on station data for individual locations, 

finding that significant increases in FFDI have already occurred during spring and summer 
different to what can likely be explained based on natural variability alone (Harris & Lucas 
2019). Studies using observations-based data and reanalysis have also examined other fire 
weather indices in Australia, including the C-Haines index over the period back to 1979 

(Dowdy & Pepler 2018), finding that statistically significant increases have already occurred 
including during summer in some parts of southeast Australia, including for simultaneous 
occurrences of dangerous near-surface and upper-level conditions (based on FFDI and C-
Haines). Such results have been confirmed in other recent climate change studies considering 

a range of factors that can influence fire weather, including some analysis over palaeontological 
time scales (Abram et al. 2021). 

Model assessment 



  

 The ability of climate models to simulate aspects such as the seasonal cycle, observed 
trends, spatial detail and extremes is important for helping to understand the degree of 
confidence in future projected changes based on these models. Assessments as pre sented in 

various studies (CSIRO & BoM 2015; Di Virgilio et al. 2019; Dowdy et al. 2019b) indicate 
that global models as well as downscaling approaches provide a reasonably good representation 
of these aspects, including seasonal and regional variations through Australia as well as the 
observed trends in general towards more dangerous weather conditions for bushfires in 

Australia. 

5.4 Summaries for projected changes 

As discussed in sections above, previous studies have examined projected future 
changes in measures of extreme such as FFDI exceeding 25 or 50 as well as FFDI exceeding 
its historical 95th or 99th percentile. Here we examine projections of the 10-yr ARI of daily 
FFDI from the available modelling approaches based on GCMs, CCAM, BARPA and 

NARCliM. These datasets all have QME calibration applied to the input variables for each 
individual model prior to calculating the FFDI, with the ARI values then calculated from the 
FFDI using a GEV approach (as was the case for temperature extremes in Section 3). The 
results show increases in the severity of fire weather conditions projected from the historical 

climate to the future projected climate during summer (i.e., December, January and February), 
as represented by the 10-yr ARI value of daily FFDI. Some variation is apparent between the 
different model ensembles in the magnitude of the increases, with somewhat larger increases 
for NARCliM in some regions, but with general agreement over these modelling approaches 

on a projected future increase in these values corresponding to the 10-year ARI. 

 

Figure 5.2: Projections for values corresponding to the 10-year ARI for daily fire weather 
conditions as represented by the FFDI (with the FFDI intended as a useful means of 

combining different weather factors known to influence fire behaviour in Australia). This is 
shown based on GCMs (left panels), CCAM (second to left panels), BARPA (second to right 
panels) and NARCliM (right panels), all calibrated using the QME method.  Maps are shown 
through Australia based on the model ensemble average in each case, presented for the 

historical period (based on 1986-2005; upper panels) as well as for the future simulated 
climate (based on 2040-2059 under a high emissions pathway RCP8.5 from CMIP5; lower 
panels). 

5.5 Lines of Evidence Table 



  

Table 5.1: Lines of Evidence Table for extreme fire weather conditions, with a focus on 
summer in the southeast and east of Australia. The degree of influence is listed in black, 
followed by whether this information implies an increase (red), decrease (blue) or little 

change (black) in the frequency and severity of extreme fire weather conditions, as well as by 
increased uncertainty (purple) in the direction of change. The rows of information are not in 
order of importance. 

Physical processes and their measures 

Individual weather 

factors 

Strong association. More extreme temperatures and heatwaves, 
lower relative humidity; small decrease in wind speed. 

Drought and fuel 

moisture 

Strong association. Projected increase in frequency of 

meteorological drought and very dry fuel conditions. Reasonable 
confidence for some contributing factors from global models (but 
potentially overestimated some conditions and considerable 
uncertainties for other factors); regional models likely to add value. 

Combined near-

surface weather 

conditions, FFDI 

Strong association. Projected increase in frequency of dangerous 
conditions in general based on numerous studies; poor agreement 
between models near east coast. 

Combined near-

surface weather 

conditions, FWI 

Strong association. Projected increase, but not statistically 
significant, and only based on one study. 

Upper-level 

conditions, C-

Haines 

Strong association (including extreme pyroconvection). Increased 
frequency of dangerous conditions in southeast (including 
simultaneous occurrence with dangerous near-surface conditions) 

and decrease in northeast. 

Subtropical ridge Moderate association in southeast. Potential increase. 

Blocking Moderate association. Future change uncertain. 

Fronts Moderate association. Future change uncertain. 

ENSO Strong association. Uncertain future change; potential increase for 
ENSO extremes (low confidence). 

IOD Strong association. Uncertain future change; potential increase for 

IOD extremes (medium confidence). 

SAM Strong association in central east. Positive trend in SAM reducing 
dangerous fire weather in central east region (medium confidence). 

Assessment for historical period 

Seasonal cycle Models reproduce the seasonal cycle and spatial variability well 

(high confidence). 

Historical trend Increase from observations (medium confidence). Models reproduce 
the trend well (medium confidence). 

Projected future change 

GCMs Increase (high confidence). 

CCAM Increase (high confidence in general; medium near east coast). 

NARCliM Increase (high confidence in general; medium near east coast). 

BARPA Increase (high confidence in general). Based on one model to date. 

Additional factors 

Lightning ignitions Strong association. Influence of climate change largely uncertain 
but increase more likely than decrease (low confidence). 

Fuel load and type Strong association. Influence of climate change largely uncertain 
but increased fuel load more likely than decrease (low confidence). 



  

5.6 Projections Likelihood Information 

The Lines of Evidence Table shows considerable agreement on more dangerous fire 
weather conditions in a warming climate for Australia, including in relation to 10-year ARI 
fire weather conditions in the southeast and east of Australia during summer (as is a key focus 
here). Although there are some physical processes noted that add uncertainties, particularly 

based on GCM projections data, the RCM approaches can help with the simulation of some of 
these processes such that the moderate level of agreement between RCM approaches 
(particularly in southern Australia but somewhat less so in parts of eastern Australia) helps add 
some confidence for projected future changes. Observed trends and RCM simulations are 

available for near-surface and higher-level conditions, including combining those different 
levels using a compound event framework (Dowdy & Pepler 2018; Di Virgilio et al. 2019; 
Dowdy et al. 2019b), showing increases in southern Australia with more variation between 
results in eastern Australian including decreases being indicated in some regions. There is low 

confidence for projected future changes in vegetation-related conditions such as fuel load and 
type, as well as in ignition risk factors including the occurrence of dry lightning, noting that 
fuel conditions and ignition sources are important factors for fire occurrence throughout 
Australia (particularly in many central and northern regions). 

Based on this assessment of a broad range of factors that can influence the occurrence 
of extremely dangerous fire weather conditions, there is High Confidence in southern Australia 

and Medium Confidence in parts of eastern Australia for the projected direction of change, with 
a future increase in 10-year ARI fire weather conditions being Likely (i.e., 66-100% 
probability) for southeastern and eastern Australia. Considering all of the review details in the 
sections above, and noting the predominance of an increase from the Lines of Evidence Table, 

projections for 10-year ARI extreme fire weather conditions in 2050 are developed here based 
on combining data from various calibrated modelling approaches including GCMs (4 ensemble 
members), CCAM (5 ensemble members), BARPA (1 ensemble member) and NARCliM (6 
ensemble members). 

FFDI data are available from these models and are the primary data source used here. 
The contrasting modelling approaches are combined based on equally weighting the changes.  

The ensemble median is used as a central estimate of the most probable projected change 
(Figure 5.3). As an estimate of the range of plausible values, the second lowest value from the 
ensemble is used for the 10 th percentile and the second highest value is used from the ensemble 
is used for the 90 th percentile, with these values calculated individually at each grid cell 

location. However, given some of the uncertainties and variations between different modelling 
approaches and studies as noted in this section (including projections based on the FWI 
showing smaller changes than for FFDI), the lower bound of the range provided here has been 
modified to reflect the potential for lower values. This is done based on reducing any projected 

increases for the 10 th percentile by a factor of two (as a qualitative estimate based on expert 
judgement). For example, at a given grid-cell location, if the 10 th percentile for the future period 
was higher by a value of 8 as compared to the 1986-2005 value, it would be changed to only 
be a value of 4 higher than the 1986-2005 value at that location. Projections for any regions 

that show decreases for the 10th percentile are not changed. Only the 10 th percentile is changed 
to allow for lower values, but no lines of evidence suggest these FFDI projections data 
systematically underestimate future increases such that the 90 th percentile is unchanged and is 
considered a plausible upper estimate for the future projected changes for these fire weather 

conditions. 



  

 

Figure 5.3: Projected change in values corresponding to the 10-year ARI for daily fire weather 
conditions during summer. Maps are shown through Australia for the historical period (based 
on 1986-2005; upper panel), as well as for the future simulated climate (based on 2040-2059 

under a high emissions pathway RCP8.5: lower panels) including a central estimate with lower 
and upper estimates also provided. The data are based on the FFDI, with some modifications 
based on considering the broader lines of evidence from Table 5.1. 

  



  

6. Conclusion 

The influence of climate change on extreme temperatures, winds and fire weather was 
assessed using a standardised method. This method is based on a review and synthesis of a 
broad range of information, designed to help guide the production of projections information 
and confidence assessment. Calibrated data from GCMs and RCMs were used for temperature 

and fire weather, with environmental diagnostics used for severe convective winds from 
thunderstorms. The projections presented here are more extreme than examined in previous 
studies (e.g., 10-yr ARI projections for fire weather and severe convective winds), with care 
taken to communicate uncertainties and document the comprehensive lines of evidence 

considered here. Data are available on request. 

The nationally consistent calibrated projections presented here, including based on new 
RCM data from BARPA, CCAM and NARCliM as well as GCMs, are intended to be of use 
for a broad range of applications. This includes for applications such as improved planning and 

helping to build resilience in relation to the influence of anthropogenic climate change on future 
hazards in Australia. 
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