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Abstract The influence of anthropogenic climate change on extreme temperatures, winds and
bushfire weather in Australia is assessed here. These assessments consider a comprehensive
range of factors including based on observations, modelling and physical process
understanding. Those factors are reviewed using a standardised method to collate lines of
evidence for guiding the production of projections information and confidence assessment.
Projections are produced using calibrated data from global and regional climate models for
temperature and fire weather, with environmental diagnostics used for severe convective winds
from thunderstorms. Projections include maps throughout Australia corresponding to the 10-
year average recurrence interval (ARI) which is more extreme than previously presented for
fire weather and severe wind projections, such that care taken to document and communicate
uncertainties, supported by the comprehensive reviews and lines of evidence. A focus of the
discussion is on southern and eastern Australia during summer, due to a need for this in energy
sector risk assessments, but with these nationally consistent projections intended to be used
more broadly forother purposestoo. The resultsfor 10-year ARI values in southern and eastemn
Australiaduringsummer show increases for temperature (Very High Confidence), severewinds
(Low Confidence) and bushfire weather (High Confidence in southern Australia; Medium
Confidence in eastern Australia) due to increasing greenhouse gas emissions.



1. Introduction and overview

This document presents climate projections for extremes based on applying a
standardised method designed to provide enhanced information on the likelihood of projected
changes. The method considers a comprehensive range of lines of evidence, including from
observations, reanalyses, modelling and physical process understanding. It is intended to help
provide guidance around future changes in extremes, given that considering many lines of
evidence can be helpful for this, including due to the range of uncertainties that often exist
around projected future changes in extremes. This method is used here together with a new set
of calibrated climate projections data produced for Australia, based on several regional
modelling approaches for dynamical downscaling.

The method (referred to here as the standardised method for projections likelihood,
SMPL) can be applied for an individual weather variable and region, or for a
multivariate/compound event (e.g., relating to bushfire risk factors based on considering a
range of different processes). A previousstudy provides examples of how this type of method
can be applied for one weather variable (mean rainfall) in four individual seasons (Dowdy et
al. 2015). The method is applied here for the following three variables with a focus on summer
(December to February), selected based on discussions with stakeholders on key needs for the
energy sector (noting the support for this research through the Energy Sector Climate
Information, ESCI, project):

o extreme temperature, based on daily maximum air temperature at a height of 2 m
(Section 3)

o extreme wind, based on 3 second average wind gust speed at a height of 10 m (Section
4)

o extreme bushfire weather, based on a compound event type of framework to consider a
range of differentrisk factors (Section 5)

For some planningand design activities relatingto future climate change, decisions will
often need to be made regardless of whether highly confident projectionsare available or not
Consequently, there may be benefits in scientists providing information on projections even if
those projections are not highly confident, as can be the case for some extreme events, as long
as the degree of uncertainty is assessed and communicated when those projections are
provided. The projections of extremes presented here are intended to help underpin such
decisions, based on considering a broad range of lines of evidence.

The examination of various lines of evidence is intended to help guide the selection of
data and methods for providing projections to end users, as well as to help produce confidence
assessment information to accompany the provision of those projections. For example,
examining the lines of evidence for a specific purpose (e.g., projections of extremes for energy
sector needs in southeast Australia) can help provide guidance when producing the projections
on whether a particular modelling approach could be useful to include or not (or perhaps
weighted differently within abroader ensembleof datasets). Thattype of targeted guidance can
be used together with other more general sources of guidance relevant to projections data
selection, such as based on broader assessments of models and methods relating to climate
change projections such as presented by CSIRO & BoM (2015) as well as in the ESCI project
technical report on modelling and downscaling (Thatcher et al. 2021).

The lines of evidence are also intended for use when producing confidence assessment
information in the projections. The confidence assessment information can include measures
such as ranges of change (e.g., probabilistic estimates of likely ranges that may be above, or



below, the most likely estimate for the projected change) and other approaches such as
descriptive terms for communicating the degree of confidence (e.g., words with quantitative
probabilities associated with them such as those used for IPCC (Mastrandrea et al. 2011)).

For information on the likelihood of projected future changes in these weather-related
variables, stakeholder feedback recommended a focus on extremes corresponding to the 10-
year average recurrence interval (ARI), representing an event with a return period of 10 years
on average (noting that the return period is equal to the reciprocal of the annual probability of
exceedance). Maps of the most likely future projected change in values corresponding to the
10-year ARI were requested by stakeholders for these weather-related variables, together with
estimates of the 10t and 90t percentile range of plausible values as a confidence assessment
measure. Maps of those quantities are presented in later parts of this report, based on
considering various lines of evidence. The resultant maps (and data layer for each of those
maps) are intended for use such as by risk analysts in the energy sector as well as for a broader
range of user groups including in other sectors. The lines of evidence are not intended to be of
direct use by risk analysts but are provided to document the method used and the supporting
science details.

The following Section 2 describes the steps for applying the method, then provides
some examples of practical uses of the outputs for improved resilience to climate hazards.
Sections 3-5 document the application of the method for extreme temperatures, winds and fire
weather, respectively. The outputs from the application of this method include national maps
and data files of 10-yr ARI values (available on request), with supporting review summaries
and confidence information.



2. Description of method and implementation of results

2.1  Steps used to apply the method

Applying the method consists of two steps, referred to here as producing the Lines of
Evidence Table (Step 1) and then producing the Projections Likelihood Information (Step 2).
The method is applied individually for each variable of interest (e.g., extreme temperature,
extreme wind and extreme fire weather are the three variables considered here). For this study,
the Projections Likelihood Information includes maps showing the most probable change in
values corresponding to the 10-year ARI, together with estimates of the 10t and 90t percentile
range of plausible change.

Step 1 — Produce the Lines of Evidence Table

» Collect a wide range of information on climate change that could be of relevance to
consider when populating the Lines of Evidence Table. This information could be obtained
from new analyses as well as from a review of existing literature. The information could
consider aspects such as observations, reanalyses, model data and physical process
understanding. For example, relevant information could potentially include analysis of
long-term observed trends, model simulations of future climate, uncertainties in
observations, uncertainties relating to a modelling approach’s ability to simulate physical
processes and observed features (such as the seasonal cycle or spatial detail of extremes),
as well as the influence of large-scale drivers (e.g., ENSO, 10D and SAM) in the historical
and future projected climates.

> Collate that information into short text summaries on different topics, with accompanying
figures and references provided to support these summaries, aiming for a general balance
of evidence based on the available science. The summaries can be grouped into broader
categories: e.g., physical processes, historical information and projected changes (as also
used for the broad sections of the Lines of Evidence Table).

» Usethose shorttext summariesto populate the Lines of Evidence Table. Thistable contains
a different row for each of the different aspects being considered (e.g., observed trends
could be on one row of the table, with modelled trends on another row of the table), with
examples of these tables provided in Section 3-5 as well as in a previous application for
rainfall in eastern Australia (Dowdy et al. 2015). For each aspect being considered, the
collected information is used to provide two key details: the degree of influence that this
aspect has on the variable in the region being considered; and what this implies for the
direction of projected future change (either an increase, decrease, little change or increased
uncertainty). This is intended as a standardised way to synthesise a broad range of
information for this method.

Step 2 — Produce the Projections Likelihood Information

» For the projected change of interest (e.g., here we consider the change from the historical
period to a future period in values corresponding to the 10-year ARI), use the Lines of
Evidence Table to determine the best available data and methods for estimating a given
likelihood measure. For example, here we aim to produce the most probable projected
change, together with estimates of the 10t and 90t percentile range of plausible change.
The method to determine the best available estimate for a given likelihood measure may
vary between different weather variables of interest (e.g., depending on the degree of
confidence in models to simulate relevant physical processes). For example, this variation
could include the selection of different datasets and methods (e.g., the use of direct model



output or statistical diagnostic methods) or scaling some data differently in a model
ensemble.

» For quantities that have a reasonably robust range of evidence, with good agreement
between those different lines of evidence (e.g., about two thirds of the Lines of Evidence
Table having a consistent sign of future change), then model output may be the best option
for producing the Projections Likelihood Information, while still considering the various
uncertainties and strengths/weaknesses of different modelling approaches for helping to
guide the production of the data products. For quantities with lower confidence (i.e., limited
evidence and/or low agreement between lines of evidence), then a more qualitative best
estimate could be appropriate. For example, in some cases with very high uncertainty the
best estimate for the Projections Likelihood Information might simply be ‘an increase is
more likely than a decrease’ for a particular region, if that is the best information that can
be provided based on the balance ofavailable knowledge from the Lines of Evidence Table.
It is acknowledged that given the broad range of differentinformation sources and data
types (e.g., direct model output or statistical diagnostic methods) this step of the process
may require some degree of expert judgement to be used.

» The Projection Likelihood Information can include confidence assessment information,
such as based on the degree of evidence and agreement from the Lines of Evidence table.
Here we use the estimates of the 10t and 90t percentile range of plausible change for
indicating the degree of confidence in the projected future changes as well as noting other
approachesthatcan be used for some applications, including the framework shown in Table
2.1 together with words that have quantitative probabilities associated with them to
accompany the provision of projections.

Additional details on the method

In addition to maps for 10-year ARI values, which is the focus of the application
examples presented here, itis possible to produce the Projections Likelihood Information for
individual locations or for regional averages. That form of information could be used to
populate atable for differentlocations or regions. Itcould also be done for different magnitudes
of a particular quantity of interest, such as the likelihood of wind speeds in the range 20-30
m.s1 or 30-40 m.st by 2050 on average in a region of interest, using the Lines of Evidence
Table to assign a likelihood measure (i.e., probability of occurrence) for the projections.

The SMPL is designed to enable a likelihood measure (i.e., probability of occurrence)
to be assigned to projections based on considering a comprehensive range of information. This
can be done for different projected values (or ranges) within the full distribution of plausible
change, noting that the total sum of the percent likelihood measures should equal 100%. The
number of different projection ranges selected can be varied depending on the specific
application intended, noting that it will always include at least two ranges (e.g., a projected
increase in temperature with a likelihood estimate of 99%also impliesa 1% likelihood estimate
of little change or decrease).

For Step 2, to determine the Projections Likelihood Information for each quantity of
interest, model output is considered together with the other information provided in the Lines
of Evidence Table (i.e., the observations and physical process understanding). The Lines of
Evidence Table can help guide the expert judgement that may be required to produce
projections of future change. For example, this could include a greater reliance on direct model
output for variables such as extreme temperature for which there is typically higher confidence
than for variables such as extreme wind gusts for which a greater reliance on physical process



understanding and other lines of evidence may be practical (e.g., statistical diagnostic methods
calibrated to observations data, rather than the use of direct model output).

These steps comprising the SMPL can be applied for a particular time period and
emissions scenario(s) of interest, which can help understand the strengths and limitations of
projections information for specific variables and regions. For this project, the method is
applied for the projected change in climate fromthe time period 19862005 (i.e., a commonly
used historical reference period for CMIP5 data (CSIRO & BoM 2015)) to the time period
2040-2059 (i.e., a time period centred on 2050 as requested by energy sector stakeholders).

The RCP8.5 scenario, representing a high emissions pathway for anthropogenic
greenhouse gases, is used for the future projections for a number of reasons. Of the set of
modelled greenhouse gas emission pathways provided in CMIP5 (which start to deviate from
each other after 2005), observed climate change trends for temperature indicate that high
emissions pathways (e.g., RCP8.5) have generally been followed more closely than low
emissions pathways (e.g., RCP2.6) (IPCC 2013; Schwalm et al. 2020). Additionally, although
there is potential for reductions in greenhouse gas emissions and the associated rate of
temperature increase later this century, RCP8.5 is used here for the application of this method
given that it takes many years after changes in emissions for an emergent change in a climate
trend, with the focus for this application on conditions from now until around the middle of
this century. However, for applications in which projections are needed based on lower
emissions pathways than RCP8.5, methods could be used for scaling the projected changes in
extremes according to the global warming magnitude for a particular time period or emissions
pathway, such as has been recently demonstrated (NESP 2020). For further details on the
relevance of using CMIP5 data for RCP8.5 for projections towards the middle of this century
see Schwalm etal. (2020).

For the method application in this study, the information collected in Step 1 for the
Lines of Evidence Table is intended to be of relevance for the National Energy Market (NEM)
region around parts of southernand eastern Australia including listing any regional variations
that might be important to consider within that region.

Table 2.1: Confidence can be assessed based on the degree of evidence and agreement,
consistent with IPCC guidelines. The degree of confidence can then be used together with the
projections data to help provide likelihood estimates (i.e., probability of occurrence)
consistent with Mastrandrea etal. (2011).

Limited evidence

Medium evidence

Robust evidence

High agreement Medium Medium-High High confidence
confidence confidence
Medium Low-Medium Medium Medium-High
agreement confidence confidence confidence
Low agreement Low confidence Low-Medium Medium
confidence confidence

2.2  Examples of how the SMPL results are being used

The results from applying the SMPL, including the probabilistic projections for
extremes and confidence assessment (based on synthesising a comprehensive range of
evidence), are being used through the ESCI project in several ways such as listed below. The



nationally consistent calibrated projections presented here are also intended to be of use for a
broad range of future applications in many other sectors. This includes for applications such as
improved planning and helping to build resilience in relation to the influence of anthropogenic
climate change on future hazards in Australia.

>

Enhanced resilience: Randomised failures are currently used as synthetic input to energy
sector modelling for matching supply and demand, including for assessing future changes
in the resilience of the NEM. As suggested by energy sector groups, the outputs of the
SMPL can be used to refine these failure rates, to help design and plan for a network that
is more resilient to future climate change based on considering a comprehensive range of
evidence.

Enhanced reliability: The SMPL outputs can be used for providing guidance to accompany
the projections data provided as input for the NEM reliability modelling, including insight
on whether some datasets might be preferentially weighted over others for some
variables/regions.

Enhanced designand planning: Probabilistic projections information for extremes fromthe
SMPL outputs can help understand the future risk of failure for various types of
infrastructure, providing important knowledge for the design and planning of individual
components in the NEMand other energy sector applications in Australia. Another example
includesthe use of the 10-yr ARI maps fortemperature in AEMO's 2020 Integrated System
Plan (ISP).

Enhanced guidance for stakeholders on climate risk and hazard scenarios including
compound events: The comprehensive review and synthesis framework of the SMPL is
being used to help examine some details for compound event scenarios (i.e., aspects of the
combined sets of conditions defined in ESCI project case study activities), intended for use
in subsequent risk assessment applications and 'stress testing' activities on climate hazards.

Broader applicability: Although the ESCI project is primarily intended to meet the needs
of the electricity sector in Australia, these SMPL results are also intended to have broader
benefits including for other sectors, given the relevance of extreme temperatures, winds
and bushfire conditions to other sectors.



3.  Method application: extreme temperature

3.1 Introduction

The SMPL is applied here for extreme values of daily maximumtemperature ata height
of 2 m during summer, with a focus on the 10-yr ARI values in south-eastern and eastemn
Australia. The application of this method follows the steps described in Section 2.

For Step 1 of the method, short summaries are presented below for different aspects
relating to future changes in extreme temperature duringsummer. Regional variations are noted
in these summaries if relevant within the region of focus. The summaries are then used to
populate the Lines of Evidence Table for extreme temperature (Table 3.1), with key details
from the summaries noted succinctly in the table in terms of the degree of influence that this
aspect has on extreme temperature and its implied direction of projected change (either an
increase, decrease, little change or increased uncertainty).

For Step 2 of the method, the results from the Lines of Evidence Table are used for
guidance in producing the Projections Likelihood Information. For this study, this includes the
best estimate of the most probable projected change in extreme temperature (presented here as
maps) as well as estimates of the 10thand 90t percentile range of plausible change as a measure
for indicating the degree of confidence in the future projections. The RCP8.5 emissions
pathway from CMIP5 is considered relevant for use here in providing projections towards the
middle of this century, given that some key observations for climate are closely tracking that
pathway (Schwalm et al. 2020) and noting the considerable time delay from a change in
emissionsuntil when an emergent climate response can be detected (includingfor the extremes
considered here). Projections for this pathway are analysed using a historical reference period
of 1986-2005 similar to that for the IPCC Fifth Assessment Report using CMIP5 data, with the
focus of results presented here on projections centred on 2050 (i.e., for the period 2040-2059).

3.2 Summaries for physical processes (not listed in order of importance)

Soil moisture

Through its control on the exchange of water and energy between the land and the
atmosphere, near-surface soil moisture plays a key role in determining air temperature. For
example, drier soils can increase the likelihood of extreme temperatures including as has been
documented for eastern Australia (Perkins et al., 2015; Herold et al., 2016) and northem
Australia (Hirsch et al. 2019). Soil moisture also plays an importantrole in developingand
maintainingextreme heatas documented for Australian heatwaves (Perkinsetal.,2016; Wehrli
etal., 2019).

On a daily timescale, soil moisture is highly variable in time and space and depends on
a range of factors such as recentrainfall, vegetation water use and evaporation (Jovanovic et
al. 2008; Ukkola et al. 2019). Soil moisture also varies seasonally and can depend on the
previous season's weather conditions and climate states such as large-scale modes of
atmospheric and oceanic variability (e.g., ENSO) and associated weather variations as well as
longer-term drought conditions. The high level of natural variability of soil moisture in both
time and space, as well as the broad range of factors that can influence soil moisture, makes it
challenging to determine future changes in these quantities based on model simulations.

In the coming decades, soil moisture is projected to decrease on average over much of
Australia, particularly in the southeastwhere mean rainfall is expectedto decrease (particularly
during the cooler months of the year) and atmospheric evaporative demand is expected to
increase (Berg et al., 2017, CSIRO & BOM 2015). For southern and eastern Australia, more



frequent periods of dry soil are projected to occur in the future with a reasonably high degree
of confidence, mostly in winter and spring but also summer (CSIRO & BoM 2015; Ukkola et
al. 2020), with this higher frequency of drier soils expected due to higher rates of atmospheric
evaporative demand and increased periods of drought. There is potential for increased rainfall
during summer, including extreme rainfall in some of the more northeast regions, which could
influence soil moisture, with medium confidence (CSIRO & BoM 2015). These previous
findings are broadly consistent with new projections of soil moisture produced through the
ESCI project (as detailed in a case study report on hydrological applications available from the
ESCI website). The level consistency between different studies and modelling approaches can
help provide some confidence in the projected future changes of soil moisture.

There are considerable uncertainties around climate models simulations of how soil
moisture can influence temperature through land-atmosphere coupling processes. For example,
a recent study has shown that climate models may overestimate the coupling between soil
moisture and extreme temperatures in wet areas of the globe, so potentially overestimate this
aspecttosome degree relatingto increases in extreme temperatures (Ukkolaetal.,2018). There
are also uncertainties in the influence of climate change on the direction and magnitude of soil
moisture change, includingrelatingto uncertainties in changes to rainfall, potential evaporation
and the use of soil water by vegetation under increasing levels of CO2 (Jovanovic et al. 2008;
Ukkola etal. 2020).

In summary, soil moisture can be an important influence on temperature extremes,
while noting some uncertainties in the ability of climate models to simulate some processes
that are relevant for soil moisture. Projections indicate more frequent periods of dry soil
moisture on average in the future during summer in southern and eastern Australia, which will
act to increase the risk of extreme temperatures, with medium confidence.

Cloud cover and solar radiation

Extremely high surface temperatures require strong solar radiation (e.g., downwelling
shortwave radiation near the surface) which can occur during periods of reduced cloud cover.
Conversely, cloud cover can reduce the chance of extreme temperatures. For example, in
California, coastal low clouds have been found to moderate heatwaves, particularly the
likelihood of a heatwave to extend to the coast (Clemesha et al. 2018).

Projections based on global climate models (GCMs) indicate little change or a small
increase in solar radiation in the southeast and east of Australia during summer (CSIRO &
BoM 2015). However, the presence of clouds is a major area of uncertainty in climate models,
both in terms of future projections and the interaction between clouds and other variables like
temperature and atmospheric circulation (Grise & Polvani 2014; Myers & Norris 2015; Voigt
et al. 2020). Additionally, there is a large degree of natural variability in cloud cover and solar
radiation, which makes it challenging to determine future changes in these quantities based on
model simulations.

In summary, cloud coverand solar radiation are importantinfluences on the occurrence
of extreme temperature. Future changes for the southeast and central east regions during
summer indicate little change or a small increase, with low confidence due to high natural
variability and the limitations of climate models in being able to accurately simulate clouds.
Regional climate models (RCMs) may provide improvements over GCMs in relation to this
aspect, although evidence in the literature is sparse.

Subtropical ridge



An intense subtropical ridge (STR) of mean sea-level pressure is associated with an
increase in the mean maximum temperature and the frequency of days above the 90t percentile
in southern Australia in all seasons (Pepler et al. 2018). This relationship is strongest in winter
and spring, including in southern regions such as Victoria and Tasmania. During summer an
intense STR is associated with more hot days in Tasmania but fewer hot days on the east coast
including Brisbane. Observations and reanalysis data showthe STR has grown more intense in
recent decades, which has contributed to observed declines in southeast Australian rainfall
(Timbal & Drosdowsky, 2013). It is unknown whether the intensification of the STR has also
contributed to pastchanges in maximum temperature or hotdays, butithas contributed to some
changes in cold nights in southeast Australia (Pepler et al. 2018).

The STR seasonal cycle is relatively well simulated in CMIP5 and is projected, with
high confidence, to intensify in the future (CSIRO & BoM, 2015). In this regard, CMIP5
models represent a significant improvement over CMIP3 models. Despite confidence in the
projection of STR intensification, itis uncertain how future intensification will impact future
extreme temperatures in Australia. Although CMIP5 models have limited ability to replicate
the STR influence on Australian rainfall (CSIRO & BoM, 2015), the STR relationships with
temperature are mostly independent of the STR-rainfall relationships (Pepler et al. 2018) and
it is a current knowledge gap in the literature as to how well the CMIP5 models replicate the
STR relationship with extreme temperatures.

In the Southern Hemisphere, the STR intensification and other measures of tropical
expansion have been linked to climate change (Nguyen et al. 2015; Grise et al. 2019) with
some contribution from ozone depletion in the summer months as well as natural variability
(Garfinkel et al., 2015; Waugh et al., 2015). Climate models consistently project a future
southward shiftand intensification of the subtropical ridge (Kentetal. 2013; Grose etal. 2015).
However, this may be masked by the influence of ozone hole recovery during the summer
months in coming decades to some degree (IPCC 2013).

In summary, the STR has historically had a significant influence on the occurrence of
extreme temperatures, with more intense STR associated with hotter summer temperatures
particularly in southern Australia. Although CMIP5 models do a reasonable job of simulating
the STR, including an increase in intensity being likely in the future, the impact of the STR on
future extreme temperatures is somewhat uncertain. As STR is a large-scale feature with links
to broader-scale processes such as tropical expansion, RCMs may offer relatively limited
improvement over GCMs in representing the STR. However, RCMs may be better able to
simulate the impacts of the STR on local climate extremes, due to better simulation of
interactions between the large scale and local factors such as cloud cover.

Cold Fronts

Frontal systems are major drivers of extreme temperature events in southern Australia.
Strong northwesterly winds prior to cold fronts enhance the advection of extreme heat from
inland Australia towards the southeast regions during summer. Some studies suggest relatively
little change in the frequency of fronts in southeast Australiaand aslight decrease in their mean
intensity over recent decades (Rudeva & Simmonds, 2015), while some studies also indicate
the frequency of fronts has decreased in some regions of southeast Australia such as for the
eastern seaboard (Pepler etal. 2021).

Climate models are generally able to simulate the average annual frequency of fronts
in the Australian region during winter, but relatively few studies have examined this during
summer (Catto etal. 2015; Blazquez & Solman 2017). Climate model projections have a weak
increase in the frequency and intensity of all fronts in southern Australia, but the available



projections do not distinguish the cold fronts associated with northwesterly winds from weaker
warm and stationary fronts (Catto et al. 2014; Blazquez & Solman 2019). Using the older
CMIP3 climate models, a simple temperature-based proxy for very extreme cold fronts
associated with summer temperature extremes and bushfires indicated a likely future increase
in the frequency of frontal systems (under both medium and high emissions scenarios),
increasing from ~0.5 events per year in the current climate to 1-2 events per year by the end of
the 21st century (Hasson et al. 2009). Considering studies such as these, considerable
uncertainties remain in relation to extreme temperature events associated with fronts in the
during summer and how these events could potentially change in the future, including
considerable uncertainties in relation to future changes in the influence of fronts on the
occurrence frequency of extreme temperatures in southern and eastern Australia.

In summary, observations indicate frontal activity has undergone little change in
southern and eastern Australia during summer, with considerable uncertainty for future
projected changes in frontal systems and their impact on extreme temperatures. Given that
fronts are synoptic-scale systems which GCMs can simulate reasonably well, there may not be
a large benefit from using RCMs to examine future frontal system activity compared to other
factors like clouds and solar radiation. However, RCMs could potentially provide value for
some aspects relating to fronts such as their interaction with terrain and associated extreme
weather impacts for localised regions in some cases.

Blocking / high pressure systems

For southeast Australia, anticyclones (high pressure systems) are typically associated
with cool southerly winds to the east of the high-pressure system and warm northerly winds to
the west. A persistentand slow-moving (‘quasi-stationary’) high pressure systemin the Tasman
Sea is often referred to as a blocking high and can cause extreme heat in southeast Australia
(Marshall et al. 2013; Boschat etal. 2015; Gibsonetal. 2017). This is somewhat distinct from
so-called "split-flow" blocking typically to the south of Australia, that can sometimes cause
cooler temperatures in some parts of southern Australia with climate models generally
simulating a decrease in the frequency of winter split-flow blocking in the Tasman Sea but
little change during the summer months (Patterson et al. 2019) (also noting the focus of this
study on summer rather than winter).

GCMs are generally able to simulate anticyclones, as they tend to be large-scale
systems, but may underestimate their persistence and the frequency of long periods of ‘quasi-
stationary’ blocking (Woollings et al. 2018). GCMs are able to simulate some of the larger-
scale pressure patterns associated with heatwaves in southeast Australia, including
anomalously high pressure in the Tasman Sea. Anticyclones tend to be stronger and slightly
further south in CMIP5 projections of future climate, which could contribute to increased
temperature extremes in the future (Purich et al. 2014). The mean sea level pressure over the
Tasman Sea is also projected to increase in the 21st century in CMIP5 models (Hope et al.
2015).

In summary, blocking/ high pressure systems, particular in the Tasman Sea region, can
influence the occurrence of extreme heat events in southeast Australia during summer.
Although there is some potential for this to increase in the future there are considerable
uncertainties around this based on existing studies. GCMs can provide a reasonable
representation of some of the larger-scale pressure features relevant to the advection of hot air
from further inland over the continent, while noting some blocking events can be better
represented by finer resolution models (Dawson et al. 2012).

Tropical cyclones



The occurrence of tropical cyclones (TCs) in northern Australia has been linked with
the intensification of heat extremes in southern Australia, including in southeast Australia
during summer (Parker et al. 2013; Quinting & Reeder 2017; Quinting et al. 2018). For
example, the extreme heat experienced around the time of the Black Saturday fires in 2009,
which set new temperature records for daily maximum air temperature for Melbourne and
surrounding locations, was associated with the presence of a TC (Parker et al., 2013).
Observationsindicate adecrease in occurrence frequency of TCs for the Australian region over
recent decades (Dowdy 2014; Chand etal. 2019).

Future projections of TCs during summer for the Australian region indicate a small
decrease in their frequency (medium confidence) (Bell etal. 2019). However, the frequency of
intense category 4 and 5 TCs may not change or increase slightly, along with some poleward
migration (low confidence) (CSIRO & BoM 2015; Knutson et al. 2020; NESP 2020). In
general, GCMs have insufficientspatial and temporal resolutionto adequately simulatetropical
cyclones. RCMs generally have finer resolution and better resolve tropical cyclones, although
RCMs still do not fully capture all relevant processes. For this reason, additional methods for
cyclone projections can also be useful to consider, such as synthetic cyclone tracks, in addition
to dynamic modelling. For further details on TCs in a changing climate see NESP (2020).

Modes of variability - ENSO

The relationship between the EI Nifio-Southern Oscillation (ENSO) and temperature
extremes is complex. Across most of northern and eastern Australia, the frequency, duration
and amplitude of heatwaves increases during EI Nifio years (Perkins et al. 2015; Loughran et
al. 2019). However, in parts of the southeast including Victoria, there is either little relationship
between ENSO and heatwaves or an increase during La Nifia years, related to an increase in
tropical convection and more slower-moving weather systems (Parker et al. 2014; Perkins et
al. 2015). El Nifo years are also associated with reduced cloud cover leading to higher
temperatures and an increase in the temperature of the hottest day of the year across most of
Australia (Arblaster & Alexander, 2012).

Although correlations between mean temperature and ENSO conditions have been
examined in numerous previous studies (such as some discussed in this section), this has not
been examined in much detail for more extreme measures of temperature. To help address that
knowledge gap, correlations are presented in Figure 3.1 for ENSO, as well as for SAM and
IOD (relating to subsequentsections below). The general patterns of correlation (indicating the
strength of the relationship with ENSQO) are broadly consistent for mean and extreme
temperatures, indicative of higher temperatures in general occurring for EI Nifio than La Nifia
conditions.

There are considerable uncertainties around how ENSO conditions (including extreme
ENSO events) may change later this century based on GCMs (CSIRO & BoM 2015).
Projections of an increase in frequency of ENSO events being sensitive to the model used
(Freund et al 2020) and frequency of extreme ENSO events sensitive to the definition used
(Marjani et al. 2019). As the teleconnections between ENSO and Australian rainfall and
temperatures have varied over time (Power et al. 1999), the strength of these relationships may
also change in the future (Fasullo et al. 2018). However, some studies have suggested there
might be an increase in the number of strong EI Nifio and La Nifia events in future (Cai et al.
2018a). As modes of variability such as ENSO are phenomena generated in association with
very large-scale atmosphere-ocean interactions, RCMs do not provide benefits over GCMs in
simulation how the modes of variability may change in the future. However, RCMs may
provide further detail on how modes of variability influence local and regional climate,



including cloud cover. In fact, RCMs have been shown to capture the historical teleconnection
between ENSO and Australian maximum temperatures quite well (Fita etal. 2016).

In summary, the influence of ENSO on future extreme temperature events involves
considerable uncertainties. The uncertainties in ENSO simulation are not able to be resolved
through the use of currently available RCM data (e.g., no coupled RCM simulation has been
performed to date over a domain large enough to encompass the processes leading to ENSO)
but RCMs may help in simulating local responses to large-scale drivers such as ENSO.

days > 99.5th
percentile of
temperature

Correlations: SAM I0D
Daily maximum Jf‘( “’\’w
temperature i o
%/ JL\ ;
w R
e f\ N
Number of /ff . /(d?(\ﬁ \\
. . i S
e )| | g
@ ! "

Figure 3.1: Correlations between temperature and climate measures. This is presented in the
upper row of panels for daily maximum temperature (using average summer values for the
months December to February: DJF) and measures representing different modes of variability
including ENSO (using the NINO3.4 index), SAM (using the SAM index) and 10D (using
the DMI index). Similar correlations are also shown in the lower row of panels, but for the
number of days with temperature above the 99.5t percentile during summer. These
correlations are all based on the period from 1979to 2019, using one value for each summer
period (DJF). NINO3.4 and DMI data are attained from the NASA ESRL
(https://psl.noaa.gov/gcos_wgsp/Timeseries/) while SAM data are from
https://legacy.bas.ac.uk/met/gjma/sam.html. Pearson's correlation coefficient, r, is shown
with stippling corresponding to statistically significant values at the 95% confidence level (2-
tailed).

Modes of variability — IOD

The 10D mostly influences Australian weather during the winter and spring, so it has
little relationship with extreme heat during the summer monthsin general (Perkins et al. 2015),
as well as noting interactions between the Indian Ocean Dipole (I0D) and ENSO (Cai et al.
2019). The relationship between 10D and average values of daily maximum temperature is
broadly similar to that for the more extreme values of daily maximum temperature, with
positive correlations through southern and eastern Australia in general (Fig. 3.1). There issome
indication that extreme positive IOD events may become more frequent in the future (Cai et al.



2018Db) but there is considerable uncertainty in the ability of climate models to simulate such
events (CSIRO & BoM 2015).

Modes of variability - SAM

The Southern Annular Mode (SAM) is a large-scale alternation of atmospheric mass
between the middle and high latitudes. The positive phase is associated with a higher-than-
normal mean sea level pressure in middle latitudes and lower pressure in high latitu des. During
a positive phase of the SAM there is a southward shift for the belt of westerly winds thatcircles
Antarctica, while the opposite occurs during the negative phase. The La Nifia phase of ENSO
increases global mean temperature and can contribute to a negative shift in the SAM (Wang &
Cai 2013).

Positive SAM is associated with a decreased likelihood of extreme heat during the
spring, but correlations are more mixed during the summer months (Hendon et al. 2007;
Marshall et al. 2013; Perkins et al. 2015). The relationship between SAM and average values
of daily maximum temperature is broadly similar in spatial patterns (e.g., sign of correlation,
from Figure 3.1) to the case for the relationship between SAM and the occurrence of more
extreme values of daily maximum temperature, with generally weak correlations or a negative
correlation in central eastern regions (particularly for mean temperature). A strong negative
SAM is also associated with sudden stratospheric warmings (as occurred in the 2019 Austral
spring), which can cause extreme heat during spring and early summer (Lim et al. 2019),
potentially associated with some of the negative correlations apparent in Figure 3.1 for the
central east region.

SAM has been becoming more positive in recent decades, particularly during the
summer months (Marshall, 2003), which has been linked to a combination of increased
greenhouse gases as well as ozone depletion and natural variability (Garfinkel et al. 2015;
Waughetal. 2015). CMIP5 models projecta robustshifttowards more positive values of SAM
in all seasons duringthe 21st century (Lim et al. 2016), although this may be masked to some
degree by the influence of ozone hole recovery during the summer months in coming decades
(Banerjee etal. 2020). In summary, climate models can simulate SAM well, but projections of
a positive trend in SAM would likely cause little change in the risk of heat extremes during
summer apart from potentially central east (noting a negative correlation with temperature as
well as links with sudden stratospheric warmings (Lim etal. 2019) for which future projected
changes are not currently known).

Modes of variability - MJO

The Madden-Julian Oscillation (MJO) is the dominant mode of atmospheric intra-
seasonal variability and the cornerstone for sub-seasonal prediction of extreme weather events
(Wang et al. 2019). Extreme heat in south-eastern Australia is more common during MJO
phases 2 and 3 in spring and phases 3-6 in summer (Marshall et al. 2013; Parker et al. 2014).
The influence of climate change on the MJO is uncertain, with less confidence in changes in
MJO-related wind and circulation anomalies than for rainfall (Maloney etal. 2019), noting that
CMIP5 GCMs are notable to provide agood representation of the MJO (CSIRO & BoM 2015).
Consequently, this remains an uncertain factor in relation to extreme summer heat in the future
including for southern and eastern Australia.

Urban effects including urban heatisland

The temperatures in urban environments are typically warmer than the surrounding
rural areas, particularly at night. This is a consequence of changes to many surface properties



which alter the surface energy budget, in addition to the presence of additional sources of
anthropogenic heat. The additional overnight heat can contribute to enhanced heat stress on
urban populations, although this may be partially counteracted by lower humidity (Fischer et
al. 2012; Williams et al. 2012). While some studies have suggested that the urban heat island
(UHI) is more intense during hotter conditions, this varies between studies and between
different areas of the world (Scottetal. 2018, Zhao etal. 2018, Chew etal. 2020). Due to the
small spatial scale of cities and the complexity of their terrain, these are typically only well
simulated in high resolution regional downscaled simulations, not coarse GCMs (Argueso et
al. 2015; Wouters etal. 2017).

The UHI effect addsa few degrees to temperatures over urban environments (Gartland
2011). This has been shown over the largest cities in Australia including Sydney (Argueso et
al. 2014), Melbourne (Imran etal. 2019), Brisbane (Chapman et al. 2019) and Adelaide (Guan
et al. 2016). The UHI has been found to exacerbate temperature extremes at night during
heatwaves in these cities (Argueso etal. 2015; Imran etal. 2019; Rogers et al. 2019). Daytime
maximum temperatures during heatwaves reflect the standard UHI addition to the temperature
of the surrounding areas. The increased night-time temperatures mean that systems have less
opportunity to cool overnight which poses a hazard for some systems including human health.

Cities will likely experience similar temperature increases due to global warming as
their surrounding regions but will remain warmer due to the UHI. It is uncertain whether the
intensity of the UHI will change as the planet warms, with any changes sensitive to changes in
other factors such as green space (i.e., vegetated areas including tree cover), soil moisture and
circulation (Fischer etal. 2012; Zhao etal. 2018). However, in regions which are currently on
the urban fringe, future population growth and urban expansion is expected to result in
additional increases in hot extremes beyond that expected from climate change alone (Argueso
etal. 2015; Wouters etal. 2017). In summary, the UHI effect means that extreme heat events
are more severe in urban regions, regardless of climate change, and urban areas are often not
well simulated in coarse resolution GCMs, although this can be better resolved in RCMs with
dedicated urban parameterisations. Itis unclear if this effectwill change in the future, but future
warming is expected to be larger in areas which are also experiencing urbanisation.

3.3 Summaries for historical information

Observed trends

Extreme temperature events have been steadily increasing in frequency and intensity
throughout Australia due to increases in atmospheric concentrations of greenhouse gases
(CSIRO & BoM2015; BoM & CSIRO 2020). Forexample, the number of extremeheat records
in Australia has outnumbered extreme cool records by about 3 to 1 since 2001 for daily
maximum temperatures (BoM & CSIRO 2020), characteristic of a shiftin the full distribution
of temperature values due to anthropogenic global warming. In parts of southeast Australia,
the hottest summer days have increased by a larger degree than expected from the change in
mean temperatures alone (Grossetal. 2019). Heatwave events have also increased in intensity,
frequency and duration across Australia in recent decades (Perkins-Kirkpatrick et al. 2016).
The 2019 year was Australia’s hotteston record, aswell ashaving 42 dayswhen the Australian
area-averaged daily mean temperature was above the 99t percentile (which also set a new
record for that measure of extreme temperatures for individual days).

Model assessment

The ability of climate models to simulate aspects such as the seasonal cycle, observed
trends, spatial detail and extremes is important for helping to understand the degree of



confidence in future projected changes based on these models. Assessments as presented in
CSIRO & BoM (2015) indicate that global models provide a reasonably good representation
of these aspects, including regional and seasonal temperature variations through Australia as
well as the observed trends.

3.4 Summaries for projected changes

Several datasets are available for future projections of values corresponding to 10-year
ARI of daily temperature. The datasets include dynamical downscaling using the CCAM
modelling approach (conformal cubic atmospheric model) applied to 5 GCMs (ACCESS1-0,
CanESM2, GFDL-ESM2M, MIROCS and NorESM1-M), dynamical downscaling using the
BARPA modelling approach (Bureau of Meteorology Atmospheric Regional Projections for
Australia) applied to the ACCESS1-0 GCM for eastern Australia, dynamical downscaling
using the NARCIiM modelling approach (NSW and ACT Regional Climate Model) applied to
3 GCMs (ACCESS1-0, ACCESS1-3 and CanESM2, with 2 configurations of each). These
datasets have all been calibrated using the quantile matching for extremes (QME) approach
described in Dowdy (2020b). Calibrated data (using QME) were also available based on four
GCMs for use in this analysis (for ACCESS1-0, CNRM-CM5, GFDL-ESM2M and MIROC5
GCMs). For further details on the selection and assessment of these models see Thatcher et al.
(2021). Itis generally recommended to use a broad range of modelling approaches (rather than
only relying on a single method) when trying to sample the uncertainty space for plausible
future changes, such that a focus on this report is on the combined results from this 16 -member
ensemble of calibrated projections datasets (i.e., 5 from CCAM, 1 from BARPA, 6 from
NARCIiM and 4 from GCMs). This is particularly important for helping to provide enhanced
confidence in projections of extremes, as is a focus here.

To calculate the values correspondingto the 10-year ARI, a Generalised Extreme Value
(GEV) approach was used. This is based on 20-year time slices: using 1986-2005 for the
historic period and 2040-2059 for the future climate projection for the RCP8.5 emission
pathway (noting that these projections data are also available for other time periods throughout
this century and historical periods, as well as for RCP4.5). The projections from these different
methodsare presented in Figure 3.2 forthe GCMs, CCAM, BARPA and NARCIiM ensembles,
all with QME calibration applied. Each method shows clear increases in extreme temperatures
projected for the future climate. Further details on these various different datasets and methods
are available in Thatcher etal. (2021).

In addition to these results based on CMIP5, some results have recently been published
based on some CMIP6 projections (Grose et al. 2020). Those results show broadly similar
changes for temperature extremes in Australia to those based on CMIP5 projections, noting
that subsequent studies will continue to examine this further including based on a larger set of
CMIP6 models than was available for that study.
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Figure 3.2: Projected change in values corresponding to the 10-year ARI for daily maximum
temperature ata height of 2 m. This is shown based on GCMs (left panels), CCAM (second
to left panels), BARPA (second to right panels) and NARCIiM (right panels), all calibrated
using the QME method. Maps are shown for Australia based on the model ensemble average
in each case. This is presented for the historical climate based on 1986-2005 (upper panels)
and future simulated climate based on 2040-2059 under a high emissions pathway RCP8.5
from CMIP5 (lower panels).

35 Lines of Evidence Table

Table 3.1: Lines of Evidence Table for extreme daily maximum temperature at a height of 2
m, with a focus on summer in the southeast and east of Australia. The degree of influence is
listed in black, followed by whether this information implies an increase (red), decrease
(blue) or little change (black) in extreme temperature, as well as by increased uncertainty
(purple) in the direction of change. The rows of information are not in order of importance.

Physical processes

Soil moisture Moderate influence. More frequent dry soil with medium confidence;
potential increase in northeast. Influence ontemperature potentially
overestimated. Regional models likely to add value.

Cloud cover and Moderate influence. Low confidence in little change or a small

solar radiation increase. Regional models likely to add value.

STR Large influence, primarily in southern Australia. Potential increase
with low confidence in future influence on extreme temperature.

Fronts Moderate influence. Future change uncertain.

Blocking Moderate influence. Future change uncertain.

Tropical cyclones | Small influence. Fewer in the future (medium confidence) from
global models; regional models likely to add value.

ENSO Small to moderate influence. Uncertain future change; potentially
more frequent strong El Nifio events (low-medium confidence).

10D Small to moderate influence. Uncertain future change; potentially
more frequent strong 1OD events (low-medium confidence).

SAM Small to moderate influence. Positive trend in SAM relevant for

northeast region temperatures (medium confidence).

MJO Small influence. Uncertain future change.




Urban effects Important for local heat extremes. Urban heat island addsa few
degrees and stays reasonably consistent in future (high confidence);
increased temperature extremes in areas of future urban growth.

Assessment for historical period

Seasonal cycle Models reproduce the seasonal cycle and spatial variability (high
confidence).

Historical trend Strong increase from observations (high confidence). Models
reproduce the trend well (high confidence).

Projected future change

GCMs (CMIP5 Strong increase (high confidence).

and CMIP6)

CCAM Strong increase (high confidence).

NARCIIM Strong increase (high confidence).

BARPA Strong increase (high confidence). Based on one model to date.
Very fine Uncertain future change dueto lack of available dataand analysis.
resolution

3.6 Projections Likelihood Information

The Lines of Evidence Table (Table 3.1) shows considerable agreement on increased
extreme temperatures in a warming climate, including 10-year ARI daily maximum
temperatures in the southeast and east of Australia during summer as is a key focus here.
Although there are some physical processes noted that add uncertainties, particularly based on
GCM projections data, the RCM approaches (CCAM, BARPA and NARCIiM) can help with
the simulation of some of these processes. Therefore, the relatively high level of agreement
between RCM approaches helps add some confidence for projected future increases. Based on
this overall assessment considering this wide range of factors, there is Very High Confidence
in the projected direction of change, with a future increase in 10-year ARI temperatures being
Very Likely (i.e., 90-100% probability).

Based onthe above pointsand detailsin the Lines of Evidence Table, projected changes
for10-year ARItemperatures forthe 2050 climate are considered here based on the 16-member
ensemble of calibrated projections datasets, combined based on equally weighting each
member of this ensemble. The ensemble median is used as a central estimate of the most
probable projected change (Figure 3.3). As an estimate of the range of plausible values from
the 16 ensemble members, the second lowest value from the ensemble is used for the 10t
percentile and the second highestvalue from the ensemble isused for the 90t percentile. These
values are calculated individually at each grid cell location for the median and percentile
estimates.

The results show thatthe future projected temperatures are higher than for the historical
period, including for the lower estimate corresponding to the 10t percentile of the model
ensemble in the future, as well as for the median and upper estimate (90t percentile). This
highlights the considerable degree of agreement between these diverse modelling approaches.
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Figure 3.3: Projected values corresponding to the 10-year ARI for daily maximum
temperature at a height of 2 m, based on a 16-member ensemble of calibrated model
projections. Maps are shown through Australia for the historical period (based on 1986 -2005;
upper panel), as well as for the future simulated climate (based on 2040-2059 under a high
emissions pathway RCP8.5: lower panels) including a central estimate with lower and upper
estimates also provided.



4. Method application: extreme winds

4.1 Introduction

The SMPL is applied in this section similar to in Section 3, but with a focus here on
extreme winds during summer (December-February) in the southeast and east of Australia.
Destructive winds in Australia can be caused by severe thunderstorms (i.e., localised weather
systems characterised by strongand deep moistconvection) or by larger-scale synoptic systems
such as tropical cyclones or extratropical cyclones and their associated frontal systems. In
addition, systems on these two different scales can occur simultaneously in the same
geographic region, resulting in compound events with enhanced impacts (Dowdy & Catto
2017).

Convective hazards including damaging wind gusts from severe thunderstorms occur
most frequently during the warmer months of the year (Brown & Dowdy 2021). The impacts
of tropical cyclones (TCs) and a type of midlatitude cyclone known as east coast lows (ECLSs)
are mostly confined to some near-coastal regions of eastern Australia (e.g., Dowdy et al.
2019a). Further details are available on climate change influences on ECLs and TCs in a
changing climate (Chand et al. 2019; Dowdy et al. 2019a; NESP 2020). In contrast, convective
systems (severe thunderstorms) affect all of Australia and have been responsible for most of
the surface wind gusts which exceed the 10-year ARI near the major population centres
including in the southeast and east of Australia (Holmes 2002), such that the SMPL is applied
here with a focus on severe convective wind gusts. Other phenomena including TCs and ECLs
are also considered here in some sections for completeness.

For Australia, wind gusts are defined by a 3-second average wind speed. Severe
convective wind gusts (SCWs) are considered for the purposes of this study as exceeding 25
m.s1, at a height of 10 meters above ground level, caused by thunderstorm outflow. This
threshold (equivalent to exceeding 90 km.hr1) is consistent with the threshold used for severe
weather forecasting and operational warnings produced by the Australian Bureau of
Meteorology. While gusts of around 25 m.s1 may not always be destructive, it is noted that
this definition is based on exceeding that value and therefore also includes higher wind speeds
(e.g., around 45 m.s'1) which have a higher chance of causing property damage. This covers a
range of ARI values consistent with wind speeds such as provided in current Australian
standards, including spanning a range broadly similar to the values for the 10-yr ARI in
southern and eastern Australia assuming flat, open terrain (Holmes, 2002). The atmospheric
environments which produce this range of wind gusts (roughly around 25-45 m.s1) are
typically characterised by unstable atmospheric conditions (i.e., conducive for convection) as
well as likely to include conditions favourable for convective organisation which can lead to
increased severity of hazards (such as can be associated with strong wind shear between
vertical levels (Taszarek etal. 2017)). Tornadoes are a special class of severe convective winds
that are not considered here, including due to their very rare occurrence at a given location and
their very small spatial scale, as well as noting that the design standards widely used in
Australia do not intend structures to withstand the occurrence of a tornado.

4.2  Summaries for physical processes

Thunderstorm environments

Environments conducive forthunderstorm occurrenceare often defined by atmospheric
instability and moisture availability, while severe thunderstorms may also require other
contributing factors such as vertical wind shear (that is when the wind changes in speed and/or
direction with height) which can help organise the structure of a severe thunderstorm (Brooks



et al. 2003; Taszarek et al. 2017). Convective instability depends on the vertical profile of
temperature and moisture. Globally, the vertical temperature lapse rate (the rate of temperature
decrease with height) is predicted to decrease/stabilise (increase/destabilise) into the future in
the extratropics (tropics) due to different rates of warming in the lower atmosphere compared
to the upper atmosphere (Bony et al. 2006), while atmospheric moisture content is predicted to
increase by about 7% per degree of warming based on the Clausius-Clapeyron relation (IPCC
2013). Vertical wind shear is predicted to decrease in the global mid-latitudes due to reduced
zonal surface temperature gradients via the thermal wind relation (IPCC 2013; CSIRO & BoM
2015).

Combining these factors through the use of environmental thunderstorm diagnostics
applied to model data, the frequency of thunderstorm environments has been projected to
increase during the coming century in the United States (Trapp etal. 2007; Diffenbaugh et al.
2013; Gensini etal. 2014; Seeley & Romps 2015) and Europe (Pucik etal. 2017), likely driven
by increases in atmospheric moisture content resulting in increases to convective available
potential energy. This is similar to results for eastern Australia during the warm season (Allen
et al. 2014), noting various model uncertainties remain unquantified for the Australian region
(e.g., a need for additional studies on variations in projections between a broader range of
models and methods).

Historical increases in the frequency of thunderstorm environments have beenindicated
by reanalysis data for some near-coastal parts of southeastern Australia, but with decreasing
frequency overall for mostregions of Australia (Dowdy 2020a), while noting those results were
for thunderstorm activity in general rather than for the more severe thunderstorm events that
can cause SCWs. Historical increases in thunderstorm environments have been reported for
Europe (Rédler et al. 2018), although trends are less certain in North America, which may
partially be due to increasing convective inhibition (CIN) offsetting increases in convective
instability (Taszarek et al. 2020), a factor which limits thunderstorm development. A recent
study indicates CIN projected to increase over most land areas in the future (Chen et al. 2020).

Some regional projections studies in the United States have noted that CIN is likely to
increase in a future climate, which could offset increases to available convective energy as
discussed above (Hoogewind et al. 2017; Rasmussen et al. 2017). These changes could
potentially combine to result in less frequent but more intense thunderstorm initiations,
although a modern GCM ensemble has suggested that CIN could decrease on days with high
amounts of instability (Diffenbaugh etal. 2013). In addition, CIN tends to be poorly resolved
in large-scale dynamical models due to issues in representing fine-scale features of the vertical
temperature profile (King & Kennedy 2019), such that future changes in this quantity represent
a key uncertainty in thunderstorm projections.

Overall, there is low confidence in an increasing frequency of favourable environments
for severe thunderstorms during summer in Australia, including based on results from other
regions and the work of Allenetal. (2014) for projections of future changes in Australia (while
noting that as based on a relatively limited range of modelling approaches). Significant
uncertainties which remain include a lack of projections data for Australia based on a broad
range of modelling approaches, as well as the influence of CIN in a changing climate on the
potential for severe thunderstorm occurrence. It is noted that favourable environmental factors
are necessary, but not sufficient for thunderstorm occurrence (depending on initiating
mechanisms) and also that additional factors are required for SCW occurrence.

Severe convective wind environments



In addition to the thunderstorm environmental factors mentioned above, there are
additional factors which can be conducive to SCW production, as well as noting different
modes of thunderstorm systems that can be associated with severe convective winds (Smith et
al. 2012). SCWs can be formed due to intense downdrafts within thunderstorms, with the
downdrafts initiated due to the evaporative cooling of precipitation which causes cold, dense
air to accelerate downwards, also aided by the weight of the precipitation itself. Downdrafts
which reach the surface will transfer their momentum (as well as background momentum from
higher up in the atmosphere) into the horizontal, causing severe wind gusts. This process
depends on environmental factors including a relatively dry lower atmosphere combined with
a steep temperature lapse rate as well as strong environmental wind speeds (Proctor 1989;
Kuchera & Parker 2006; Brown & Dowdy 2021), although the relative importance of these
may vary with convective mode (Doswell & Evans 2003). It follows that the variability of
SCWs on climate timescales may be different to thunderstorms in general (Brooks 2013). The
impact of climate change on individual convective hazards, such as severe surface winds, is
highly uncertain (Allen 2018). However, recent work in Australia has suggested the potential
for increases in the frequency of severe convective wind environments into the late century
(Spassiani 2020), which is similar to historical findings for Europe (Radler etal. 2018). There
have also been future projections of severe convective wind speeds for Tasmania (Cechet et al.
2012), applying a severe thunderstorm diagnostic to historical observed wind speeds. New
projections of SCW environments are presented in Section 4.4 (with details on this method
available in Brown & Dowdy (2021)).

Thunderstorm initiation

Given an environment favourable for severe convection (i.e., thermodynamically
unstable conditions), synoptic systems (extratropical cyclones, fronts, jets), atmospheric waves
and orographic influences (sea-breezes and mountains) can help provide thunderstorm
initiation. Projection studies tend to indicate that changes in synoptic initiation mechanisms
such as mid-latitude extratropical cyclones and east coast low systems are not clear for
Australiaduringthe summer months (Catto etal. 2014; Pepleretal. 2016 ; Dowdy etal. 2019a).
Cyclone-related convection is sensitive to changes in coastal sea surface temperature gradients
(Chambers etal. 2015), noting that the Tasman Sea east of Australia is a region of accelerated
ocean warming. Projections related to fronts are discussed in detail within Section 3, which
indicates there is a considerable amount of uncertainty, with little or no change being the most
plausible outcome.

There s relatively little information onchangesto orographic flows such as sea breezes;
however, the strength of the sea breeze is strongly related to the land-sea temperature contrast,
which is expected to increase into the future. One study found anincrease in the frequency and
intensity of sea breezes in Adelaide between 1955-2007 (Masouleh et al. 2019). Regional
model simulations at 20 km resolution have been shown to provide a reasonable simulation of
the sea breeze in the Mediterranean region (Drobinski et al. 2018), although convective
parameterisations are less skilful in simulating sea breeze-related CIN (Birch et al. 2015). In
summary, changes to thunderstorm initiation mechanisms in Australia during the summer are
highly uncertain.

Modes of variability — ENSO, 10D and SAM

Details on modes of variability were provided in Section 3, including in relation to
ENSO, 10D and SAM conditions in a changing climate. Building on that information, aspects
specifically relating to SCWs are summarised here.



Thunderstorm environments are notsignificantly related to ENSO conditions in general
for Australia, apart from in northern Cape York Peninsula where they are more likely during
La Nifa than El Nifio conditions (Allen & Karoly 2014; Dowdy 2016, 2020a). However, it is
still feasible that ENSO may potentially modulate convective initiation mechanisms, such as
by reducing cloud cover during El Nifio conditions and enhancing the sea-breeze circulation in
south-east Queensland which might increase the frequency of severe thunderstorm events
(Soderholm et al. 2017) while noting considerable uncertainties around the role of ENSO on
such processes. Itis likely that there is not a strong relationship between ENSO and synoptic-
scale initiation mechanisms, includinglittle or no relationship found between ENSO and fronts
in southern Australia or between ENSO and ECLs in eastern Australia (Rudeva & Simmonds;
Power and Callaghan 2016; Dowdy etal. 2019a). The relationship between ENSO and SCW
environments is shown here in Figure 4.1a, suggesting very little relationship with ENSO in
eastern Australia during the summer. In summary, the influence of ENSO on SCWs appears to
be relatively weak while noting considerable uncertainties based on limited data and analysis
to date, as is also the case for the relationship between ENSO and severe thunderstorm
occurrence as well as between ENSO and synoptic initiation mechanisms (including fronts and
cyclones in southeast Australia during summer).

The 10D has previously been found to not have a notable influence on thunderstorm
activity in Australia during summer including in southern and eastern Australia, as detailed in
Dowdy (2020a), while noting that study was not specifically focussed on severe thunderstorms
which could potentially have different characteristics to thunderstorms in general. The
influence of the IOD on severe thunderstorms in Australia is currently uncertain based on a
lack of previous analyses (Allen & Allen 2016), although the IOD may relate to extreme wind
gust variability in general, with potential for higher occurrence frequencies during negative
IOD phases (Azorin-Molina etal. 2021). The influence of the IOD on SCW environments is
not significant during the summer in southern and eastern Australia (Figure 4.1c), broadly
similar to the lack of correlation between the 10D and thunderstorm environments (Dowdy
2020a), with some indication of a relationship in northeast regions.

Similar to the IOD and ENSO, the influence of SAM on severe thunderstorms in
Australia is largely uncertain. Although no consistent relationship has been found previously
with thunderstorm environments (Dowdy 2020a), itis plausible thata positive SAM phase with
reduced westerlies in eastern Australia during the summer may enhance moisture availability
due to increased onshore flow in some regions, thereby increasing the frequency of favourable
thunderstorm environments if such cases were to occur. In a negative SAM phase, the
strengthening of background winds and a relatively dry lower atmosphere due to enhanced
westerlies plausibly could increase the potential for an environment favourable for strong
convective downbursts (albeit through a different mechanism to that described above for the
positive SAM phase). Although it is not clear based on considering such physical processes as
to which phase of SAM may be more likely to generate SCWs, it appears that the negative
phase of SAM is more conducive than the positive phase for SCW environments based on the
results in Figure 4.1b. In addition, enhanced westerlies and associated cold fronts during the
negative phase of SAM (Rudeva & Simmonds, 2015) may increase the frequency of synoptic
initiation mechanisms in some southern regions, andextreme wind gusts from station data have
also been shown to be more frequent in this phase (Azorin-Molinaetal., 2021).
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Figure 4.1: Correlations for summer between the number of days with a favourable severe
convective wind environment and seasonally-averaged indicators of a) ENSO (Nifio3.4
index) b) 10D (Dipole Mode Index) and c) SAM (Marshall Index) for 1979-2018. The
thunderstorm environments are calculated from the ERAS reanalysis (Hersbach et al. 2020)
based on the method of Brown & Dowdy (2021). Hatched regions indicate a significant
relationship at the 95% confidence level (e.g., about 5% of the region could be expected
hatched on average due to random chance alone). NINO3.4 and DMI data are attained from
the NASA ESRL (https://psl.noaa.gov/gcos_wgsp/Timeseries/) while SAM data are from
https://legacy.bas.ac.uk/met/gjma/sam.html.

Other phenomena that can cause severe wind gusts

Phenomena other than thunderstorms can produce severe wind gust speeds in some
cases, including TCs in the more northern regions of Australia (with relatively little influence
on central-east regions of Australia), as well as ECLs in near-coastal regions in the southeast
and eastern of Australia while noting that the most damaging ECLSs typically occur during the
cooler months of the year (which reduces their relevance to this study's application here for
summer). Long-term climate trends in the occurrence of TCs and ECLs and associated severe
wind gusts during the summer months are briefly discussed here, including in relation to a
changing climate, while noting that the primary focus of the analysis here is on severe
thunderstorms for the purposes of this study.

Fewer ECLs are projected in a warming world, but with higher confidence during the
cooler months of year and more uncertain changes projected in the future occurrence of ECLs
during summer (Dowdy et al. 2019a). This includes large uncertainties around the projected
change in the intensity of intense ECLs during summer (i.e., those with extreme wind speeds).

The topic of TCs and associated severe wind gusts has received widespread attention
in Australia, including in relation to building codes and Australian structural design standards.
Wang etal. (2013) reported that structuresalong the north-east coast of Australia may already
be subject to higher gust speeds than the current design standard permits, with projected
changes in severe wind gust speeds being sensitive to TC frequency and intensity change,
particularly between Cairns and Townsville.

There has been a significant downward trend in the occurrence frequency of TCs
observed in the Australian region (Dowdy 2014; Chand et al. 2019). Future projections based
on global models are consistent with these findings in indicating a downward trend in the
occurrence frequency of TCs in the Australia region (Bell etal. 2019). The currently available
range of climate models have large uncertainties in their simulations to identify the more
intense and damaging TCs (e.g., Category 4-5) such that there is considerable uncertainty in



future changes in damaging wind speeds associated with them (Knutson et al. 2020; NESP
2020). Observational studies indicate that for the east coast of Australia there has been no
change in severe landfalling TCs (Chand et al. 2019), with an increase suggested by Holmes
(2020) primarily since 2011 and mostly evidentbetween Townsville and Rockhampton (noting
that this is a relatively shorttime period for climatological assessments of rare events with large
interannual variability such as these). A recent review that considered observations and future
projections concluded that the frequency of Category 4 and 5 TCs may not change or increase
slightly along with some poleward migration or little change in their spatial extent being
plausible future outcomes, but with considerable uncertainties, as detailed in NESP (2020).

To summarise for TCs, the rareness of category 4-5 TC events and relatively short
historical time period for high-quality observations embeds a considerable degree of
uncertainty on how climate change could influence TC-related wind gust risk on the northeast
coast of Australia, especially at the regional level. By considering the available information
including from modelling and observations, it can be said with low-medium confidence that
little change or an increase are more likely than a decrease in the occurrence frequency of
Category 4-5 TCs in the future for Australia, including for the east coast during summer.

4.3 Summaries for historical information

Observed trends

Because of observational constraints, historical trends in the frequency and intensity of
convective winds in Australia are unknown (Walsh etal. 2016; Brown & Dowdy 2019). This
is largely due to spatio-temporal inhomogeneities in severe weather reports (Allen et al. 2011)
and wind observations (Jakob 2010). Itisalso noted thatconvective phenomenaoccur on small
spatial scales which are often missed by the observational network and make the detection of
trends difficult. However, observed lightning activity, indicative of convective activity,
indicates a potential long-term decrease in occurrence frequency during winter in southem
Australia with little change during summer (Bates et al. 2015).

More broadly, extreme winds from station data (defined as the 90t percentile of daily
maximum observations and including all wind-producing phenomena) have shown long-term
decreases in frequency in Australia (Azorin-Molina et al. 2021), consistent with decreases in
average wind gust magnitude (McVicar et al. 2008). These changes may be partly attributable
to environmental factors such as vertical wind shear and thermal instability, although the exact
causes are unknown. Further details on trends are provided in subsequent sections below,
including for studies based on reanalyses.

Model assessment

GCMs, reanalyses and commonly used downscaling approaches available for Australia
are unable to resolve the small spatial scales required for simulation of SCWSs. Therefore,
models are assessed here in terms of their ability to correctly represent the environments which
are favourable for SCW occurrence, as well as the spatial and temporal variability of these
environments. In addition, the ability of environmental model diagnostics to represent the
variability of observed events is discussed.

For Australia, GCMs are generally able to represent the spatial distribution of severe
thunderstorm environments, although significant biases may exist for individual models in the
seasonal and diurnal cycle, related to the representation of near-surface moisture (Allen et al.
2014). In other regions, climate model representation of thunderstorm environments has been
shown to vary greatly with individual models (Seeley & Romps 2015), while some models



have been shown to replicate historical trends in environments for sufficiently large climate
signals (Pistotnik et al. 2016). Individual model biases for severe thunderstorm environments
may be addressed to some extent using a multi-model ensemble with bias correction.

Reanalysis models used for historical analyses can reliably represent atmospheric
environments based on observed sounding data (Brown & Dowdy 2021), although some key
elements such as CIN may remained unresolved due to insufficient vertical resolution (King &
Kennedy 2019). SCW diagnostics from these models can broadly represent the seasonal and
diurnal cycle of measured wind events in Australia (Brown & Dowdy 2021). Diagnostics have
also been shown to have a statistically significant correlation with the observed inter-annual
variability of SCW events, which has also been found for other small-scale convective hazards
in other regions, such as tornado events in the United States (Gensini & Brooks 2018). In
addition, environmental model diagnostics have been shown to explain most of the variability
in convection resolving model thunderstorms (Hoogewind et al. 2017).

In summary, atmospheric models which use historical observations (reanalyses) can
reliably represent thunderstorm environments, and diagnostics intended to identify SCW
environmentsare able to broadlyrepresentthe variability of observed events. Significant biases
exist in the representation of these environments within individual climate models, although
biases may be somewhat addressed using multi-model ensembles with bias correction.

Trends in severe convective gust environments

Historical trends in the frequency of atmospheric environments favourable for SCWs
are assessed here using the ERAS reanalysis (Hersbach etal. 2020). As described in sections
above, environmental approaches such as this are common for assessing convective hazards in
model data, including for long term trends (Radler et al. 2018; Taszarek et al. 2020).

Figure 4.2 presents historical summertime trends from 1979-2018, using four different
diagnostics for environment identification. This includes one diagnostic which has been
developed by Brown & Dowdy (2021) using statistical methods (referred to herein as the
Brown Dowdy Statistical Diagnostic: BDSD, as well as three other diagnostics that have been
used in a range of previous studies and for severe weather forecasting purposes. The BDSD
was shown to provide a good representation of spatial and temporal variability in observed
convective wind events as compared to other commonly used environmental diagnostics for
severe thunderstorm environments, with further details on these diagnostics and analysis
available in Brown & Dowdy (2021).

The BDSD indicates little to no long-term trend in occurrence frequency for southeast
Australia (Figure 4.2). There are some areas of decreasing frequency over inland regions,
broadly consistent with previous results for the state of South Australia noting some fine-scale
regional variations (Brown & Dowdy, 2019). These areas of decreasing frequency for BDSD
also appear when considering the other diagnostics shown in Figure 4.2. These alternative
diagnostics also indicate some areas of increasing frequency off the south-east coast. That
increase is broadly consistent with previous analysis of thunderstorm environments indicating
positive trends in this far-southeast region with negative trends in general for other regions
including northern Australia (Dowdy 2020a).

The BDSD is specifically tailored to SCW environments and designed to represent a
broad range of relevant physical processes (e.g., a broader range of processes than is the case
for the other diagnostics shown in Figure 4.2). However, the other diagnostics are also
considered in this analysis for general completeness, as well as noting the considerable
uncertainties around the use of any single method for analysis of long-term climate trends in
SCWs based on currently available knowledge.



In summary, this trend analysis based on reanalysis data indicates relatively little
change throughoutmost of southeast Australia includingbasedon the BDSD statistical method,
with a potential increase indicated for some near-coastal regions in the far southeast in near-
coastal regions from the full set of diagnostics more broadly (while noting low confidence in
general). Decreases are indicated for most northern and eastern regions, with increases also
indicated for some southwest regions of Australia.
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Figure 4.2: Long-term changes in the frequency of days with favourable SCW environments
during the summer, based on ERAS reanalysis data. Changes are based on four diagnostics,
(a) BDSD, (b) total totals (T-Totals), (c) severe hazards in reduced buoyancy environments
(SHERBE) and (d) the derecho composite parameter (DCP). The change in the mean number
of days per season is shown, calculated as the difference from the period 1979:1998 to the
period 1999:2018. Significant changes are represented by hatching based on Student’s t-test
with a 90% confidence level (two-tailed).

4.4 Summaries for projected changes

Global climate models

As discussed in sections above, there is very limited information available on
projections of SCWs in Australia. Here we use various environmental diagnostics (as used to
assess historical trends in Section 4.3) applied to future projections data from a bias-corrected
12-member CMIP5 ensemble (Taylor etal. 2012).

Future changes in the frequency of environments are presented for four diagnostics
relevant for convective winds between 1979-2005 and 2081-2100, presented for the summer
months December to February (Figure 4.3). These diagnostics are the same as those used in
Section 4.3, again noting that the BDSD (Figure 4.3a) is potentially most suitable based on
representing the variability of historical events (Brown & Dowdy 2021). The BDSD generally
indicates increases in the frequency of environments across Australia, although little or no
change may be more plausible for some near-coastal regions in eastern Australiaand Tasmania.
Increases are also generally indicated for two of the other three diagnostics (SHERBE and
DCP), while decreases are indicated by the total totals diagnostic. The diagnostics which
indicate increasing frequency in environments are largely driven by increasing moisture
content in the lower atmosphere, while the decrease for total totals is driven by a stabilisation
of the temperature lapse rate. Increasing moisture and decreasing lapse rate are expected in the



future (see Section 4.2) and have opposite effects on the potential for convection to occur.
These competing factors introduce uncertainty for future projections of SCW environments as
represented by these diagnostics, as it is unclear whether changes to the atmospheric lapse rate
or moisture will be more influential.
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Figure 4.3: Projected future changes in the frequency of favourable SCW environments
during summer shown as (a-d) a change in the number of days per season and (f-i) percentage
changes. The changes are calculated from the period 1979:2005 to the period 2081:2100
based on a high emissions pathway (RCP8.5) using an ensemble of 12 GCMs. The ensemble
median response is shown. Changes where at least 10 (out of 12) models agree on the sign of
change, as well as where the seasonal mean number of environments in the historical period
IS greater than one, are shown with hatching. These results are intended for broad-scale
guidance on some of the plausible changes that could occur for SCW occurrence in a warmer
world, including on direction of change and estimated range of potential future change as
represented by these metrics.

Convection-permitting modelling

Convection-permitting modelling has been used in a relatively limited number of
studies as an alternative to the large-scale environmental approaches commonly used for
projections of severe thunderstorms and associated hazards. Although being very
computationally expensive, this type of modelling can have the advantage of simulating some
factors which are more challenging to represent in environmental approaches. This can
potentially include better simulation of CIN and some triggering mechanisms such as the
influence of localised orographic features, as well as potential for improved representation of
some other aspects of thunderstorm characteristics (e.g., potentially providing some estimates
of intensity and morphology in some cases).



Leslie et al. (2008) used a convection-permitting model to dynamically downscale
climate model data in order to study potential future changes to hailstorms in Sydney, with
results suggesting an increase in the number of large hail events but with little change to the
total number of hail events. Although there have not been any subsequent studies which have
built on those results for Australia, modelling in the United States has found similar increases
for large hail with little change or decreases for moderate- and smaller-sized hail (Trapp et al.
2019; Raupach et al. 2021). There have also been modelled increases for the frequency of
hazardous convective events in general without being specific on the type of hazard
(Hoogewind etal. 2017). Elsewhere, convection-permitting modelling in the United Kingdom
has suggested an increase in the intensity and frequency of convective rainfall (Kendon et al.
2017). However, more modelling at these fine scales, including with a greater number of
driving GCMs and covering longer periods needsto be done to build on these results, including
with a focus on severe thunderstorms in Australia's changing climate.

A limited amount of convection-resolving modelling was produced for this project by
applying the BARPA modelling framework using around 4 km horizontal grid spacings,
covering a reduced mid-latitude domain including the capital cities of Sydney, Adelaide,
Melbourne and Hobart (as well as noting the availability of BARPAC-T using a 2 km grid
spacing for a region around the tropical east coast of Australia). Initial results suggest that this
convection-resolving approach which includes downscaling the ACCESS1-0 GCM
(BARPAC-M) can provide a better representation of severe wind gusts relative to the
convection-parameterising BARPA configuration (BARPA-R) that has a 12-km horizontal
grid spacing. For example, analyses of BARPAC-M and BARPA-R data are presented here
and compared with daily maximum wind gust observations from station data at 12 locations
(Figure 4.4a,b), indicating broadly similar results for BARPAC-M to those based on
observations with somewhat lower wind speeds for the upper tail in BARPA-R. These 12
locations are from observationstations in the BARPAC-Mregion thathave a reasonable quality
and length of wind data suitable for climate analysis, such as discussed in Brown & Dowdy
(2021).

Resultsalso suggest that the BARPAC-M modelunderafuture climate scenario (2039-
2059) produces stronger 20-year maximum wind gusts when considering all land points in the
domain relative to the historical run (1985-2005; Figure 4.4c). These results for future changes
may not be statistically significantdue to the small sample size of extreme gusts and noting
various uncertainties from the modelling approaches (including potential variation between
different host models, time periods, emission pathways, etc.), the gust origins (i.e., synoptic or
convective, as well as potential for different types of convective modes) or spatial variations.
However, they demonstrate that convection-resolving approaches may provide additional
insight into future changes in extreme events such as SCWs. In particular, these initial results
indicate that increased intensity of SCWs in the future is one plausible outcome, while noting
the considerable uncertaintiesdiscussed above and the limited data currently availability for
convection-permitting modelling of future simulated climates.
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Figure 4.4: Modelled wind gust speed vs observed wind gust speed, presented for different
quantiles of daily maximum wind gusts at 12 locations. Results are presented from the
convection-permitting mid-latitude model run of BARPAC-M (a) as well as from its host
model for the regional configuration of BARPA-R (b). As one example of projected future
changes based on BARPAC-M, the 20-year maximum wind gust is shown under historical
(1985-2005) and future (2039-2058) conditions, with the blue line representing the quantile-
matching of wind speeds between those two periods using data for individual grid points (land
only). The dotted line represents no change from historical to future, with values below and
above that line representing decreases and increases, respectively, in the occurrence
frequencies of wind speeds in the ranges shown.

4.5 Lines of Evidence Table

Table 4.1: Lines of Evidence Table for severe convective winds (SCWSs), with a focuson
summer in the southeast and east of Australia. The degree of influence s listed in black,
followed by whether this information implies an increase (red), decrease (blue) or little
change (black) in the occurrence of SCWs, as well as by increased uncertainty (purple) in the
direction of change. The rows of information are not in order of importance.



Physical processes and their measures

Thunderstorm Medium-Strong association. More favourable environments in parts

environments (not | of southeast (low confidence) with increasing moisture content (high

specific only to confidence), as well as decreasing atmospheric lapse rate (medium-

SCWs) high confidence) and vertical wind shear (medium confidence).

SCW environments | Strong association. Many uncertainties and few studies to date.

Thunderstorm Strong association. Uncertain changes (relating to extratropical

initiation cyclones, fronts, jet-streams, atmospheric waves, orographic flows
and convective inhibition).

ENSO Weak association. Uncertain future change.

10D Weak association. Uncertain future change.

SAM Moderate association in eastern Australia. Projected shift towards
positive SAM.

Additional factors | Moderate influence of TCs in subtropics, as well as ECLs in coastal

including east and southeast, for damaging winds in summer. Uncertain

phenomena such as | expansion of TC range. Fewer TCs, but potentially more intense on

cyclones average. Uncertain projections for summer ECLSs, including

intensity and associated extreme winds.

Assessment for historical period

Model assessment | SCW environments can be simulated reasonably well by calibrated
climate model ensembles, while noting many other uncertainties.

Historical trend in | Little change or fewer through inland eastern Australia, small region
SCW environments | of potential increase in south-east (low confidence, with uncertainty
in modelling methods and limited observations).

Historical trendin | Uncertain due to observational constraints.

observed SCWs

Projected future change

GCMs More SCW environments for southern and eastern Australia (low
confidence due to uncertainty in model diagnostics).

RCMs and Some indication of a potential increase, but with very limited

convection- available data and analysis to date (highlighting a need for more

permitting models | research).

4.6  Projections Likelihood Information

The lines of evidence table (Table 4.1) shows high uncertainty in observed trends and
projected future changes for SCWs, with additional uncertainties around projected changes of
related physical processes for extreme winds during summer in the southeast and east of
Australia. A considerable amount of this uncertainty arises from the small spatial scales
associated with the physical processes that lead to the occurrence of severe thunderstorms and
the SCWs they can cause, resulting in a limited ability to model these events based on current
approaches (while noting some potential improvements using convection-permitting
modelling). Uncertainty also arises from the lack of suitably homogenous observations for
long-term climate trend analysis.

Some insight on plausible future changes is provided by the environmental diagnostic
approach (i.e., large-scale diagnostics). Calibrated model projections from an ensemble of
GCMs indicate a range of plausible changes (including increases and decreases) in the
frequency of dayswith favourable conditions for SCWs, with ensemble median estimates of a
7% and 8% increased frequency for southern Australia and eastern Australia, respectively,



based on the supercluster regions defined in CSIRO & BoM (2015). Confidence in this result
is relatively low (i.e., much lower than for extreme temperature projections from the previous
section) and spans a wide range of plausible change indicated by the different diagnostics and
individual GCMs (e.g., 10t and 90% percentile estimates based on a 48-member model-
diagnostic ensemble provided in Table 4.2). Increasing environmental frequency based on
median estimates agrees with expected changes to thunderstorm environments in Australia
based on physical process understanding (Low Confidence), including increased atmospheric
moisture content in a warmer world, although decreases are also plausible due to decreasing
atmospheric lapse rates (as indicated by one of the diagnostics in Figure 4.4: Total-Totals) as
well as noting uncertainties relating to factors not included in these environmental diagnostics
(e.g., initiation mechanisms and convective inhibition).

The results based on environmental diagnostics are broadly similar to the initial results
from the convection-permitting model runs of BARPAC-M, which indicated a small increase
in the upper tail of wind gust speeds in the future. However, further research is required to
examine how well these extremes can be simulated in the fine-scale model data provided by
convection-permitting dynamical downscaling modelling approaches.

In summary, an increased occurrence frequency of severe winds is indicated in the
southeast and east of Australia during summer but with low confidence, noting that both
increases and decreases are plausible outcomes based on the full range of lines of evidence
considered here. The estimatedrange from the environmental modelling (Table 4.2) is intended
to be useful for some planning and risk management purposes. The central estimates of the
model ensemble could also be useful in some cases, showing that the most likely projections
for the future is little change or a small increase in frequency (Low Confidence).

Table 4.2: Projected percentage changesin severe convective wind environment frequency
(days per season) during summer, based on 12 CMIP5 GCMs, as well as using four
diagnostics (Brown & Dowdy 2021). This results in a 48-member ensemble, with the median,
10t and 90t percentile changes shown. The changes are calculated from the period
1979:2005 to the period 2081:2100 based on a high emissions pathway (RCP8.5), averaged
over Eastern and Southern Australia (using the regions defined in CSIRO & BoM (2015)).

NRM super-cluster region Median change | 10" percentile 90™ percentile
Eastern Australia 8% -56% 33%
Southern Australia 7% -49% 45%




5. Method application: extreme bushfire weather conditions

5.1 Introduction

Bushfires can be considered as a form of compound event given the range of factors
that influence their occurrence, including based on the combined range of weather factors that
can influence their occurrence (from various near-surface conditions to higher-level
atmospheric processes including convection through the troposphere and into the stratosphere
in some extreme cases). In addition to the combination of various weather conditions, the
occurrence of dangerous bushfires can also be influenced by various other factors including
vegetation conditions (such as relating to fuel load and type) and ignition sources (such as
associated with human activities or with lightning), some of which can be challenging to
incorporate into integrated frameworks for modelling of compound events (e.g., given the
current limitations in coupled fire-atmosphere-vegetation climate modelling). Although there
are very large uncertainties around modelling fuel conditions and ignition sources including in
a changing climate, these other factors are also considered in this section, while noting that the
primary focus of this analysis is on dangerous weather conditions for bushfires.

Bushfire weather conditions are often represented by indices as a useful way of
combining various weather conditions known to influence fire behaviour (e.g., near-surface
humidity, wind speed, temperature and rainfall). Examples of such indices include the Forest
Fire Danger Index (FFDI) commonly used in Australia (McArthur 1967) as well as the Fire
Weather Index (FWI) originally developed in Canada but now widely used throughout the
world (Van Wagner 1987; Dowdy et al. 2009; Field etal. 2017). The FFDI and FWI are both
based on near-surface measure of humidity, wind speed, temperature and rainfall, with a
broadly similar order of sensitivity to these four individual weather conditions (Dowdy et al.
2009). Indices have also been developed for grass fires, such as the GFDI (McArthur 1967),
while noting that grass fires were not identified by the energy sector stakeholder for this
research asa significanthazard. Indices are also available for various other fuel types including
a multi-index system currently in development for Australia (known as the Australia Fire
Danger Rating System: AFDRS). Indices such as the Continuous-Haines index (C-Haines) are
based on conditions at higher levels of the atmosphere and can be useful for indicating risk
factors associated with the occurrence of extreme fire events (including very dangerous fires
that generate thunderstorms in their fire plumes known as pyrocumulonimbus or pyroCb
clouds) (Mills & McCaw 2010; Dowdy & Pepler 2018; Di Virgilio et al. 2019; Dowdy et al.
2019b). Many of the more disastrous fire events in recent decades have been associated with
the occurrence of pyroCb events, including for the Canberra fires in 2003 and the Black
Saturday firesin 2009 aswellas duringthe 2019/2020 Black Summer fires (Fromm etal. 2006;
Cruzetal. 2012; McRae etal. 2013; Dowdy et al. 2017; Australian Government 2020).

The SMPL is applied here for extremely dangerous fire weather conditions during
summer in the southeast and east of Australia, considering some similar aspects to those
detailed in Sections 3 and 4. However, in contrast to the application of this method for
individual weather conditions such as extremetemperature (Section 3) and extreme wind speed
(Section 4), the combined influence of multiple different weather conditions known to
influence fire behaviour is considered here. Factors considered include near-surface weather
variables such as humidity, wind speed, temperature and drought measures relating to fuel
availability, aswell as other atmospheric phenomena suchasthe influence of synoptic systems,
mesoscale convective processes as well as large-scale atmospheric and oceanic modes of
variability. Although the focus here is on fire weather, other factors relating to bushfire
occurrence are also discussed including ignition and fuel conditions.



5.2  Summaries on physical processes

Individual weather factors

Weather conditions such as humidity, wind speed and temperature can influence fire
behaviour in Australian forests (McArthur 1967), with the conditions changing as our climate
warms (CSIRO & BoM 2015; BoM & CSIRO 2020). As detailed previously for extreme
temperature (Section 3), climate change is increasing the frequency and severity of extreme
heat events (high confidence), including for individual days as well as for more prolonged
events (e.g., heatwaves). This is based on many lines of evidence including from observations,
modelling and physical processes understanding.

Observed changes in humidity across Australia are not well described by linear trends
overtime, butmost sitesacross Australiahave shown long-term increases in atmospheric water
vapour concentrations (i.e., including measures of this such as dewpoint temperature and
specific humidity), with the largest increases in the interior of the continent and some eastern
regions (Lucas 2010). Increased temperatures lead to an increase in the moisture holding
capacity of the atmosphere (of about 6-7% per degree of warming based on the Clausius-
Clapeyronrelation), which resultsin increased water vapour pressure in general (i.e., increased
specific humidity). However, it is relative humidity (or vapour pressure deficit) that is
important for fire behaviour including given its influence on fuel moisture, noting that relative
humidity depends on both water vapour pressure as well as air temperature. As some regions
warm faster than others (e.g., land regions warm more than ocean in general) there can be
differences in the relative humidity for a given change in water vapour content. In general for
Australia, a decrease in relative humidity is projected to occur, including during summer with
CSIRO & BoM (2015) listing medium confidence for this (as compared to high confidence for
winter and spring), while noting some finer-scale modellingfrom RCMs indicates little change
in some regions (Clarke & Evans 2019).

A small decrease in wind speed has been observed for Australia in general, while
noting considerable uncertainties relating to data availability and homogenisation (Azorin-
Molina et al. 2021). There are also considerable uncertainties around model data for wind
speed, including due to significant negative bias in modelled wind speed during high wind
conditions (in general for most models). Many factors such as boundary layer mixing, form
drag for sub-grid orography and surface properties can influence wind estimation over land.
The representation of the stable boundary layer remains challenging due to the multiplicity of
physical processes (including turbulence, radiation, land surface coupling and heterogeneity,
turbulent orographic form drag) involved and their complex interactions, such that models
typically suffer biases in wind speed under such conditions. Projections for Australia indicate
little change or a small decrease during summer in mean wind speed, with considerable
variation between different models: some show increasesand others show decreases, typically
within about +/-5% in magnitude (CSIRO & BoM 2015). Further details on processes that can
cause strong winds are provided below in this section (in relation to synoptic-scale phenomena
such as fronts and blocking highs).

Drought and fuel moisture

Drought conditions can lead to low moisture content in vegetation that increases the
availability of fuel for bushfires. Climate change is expectedto increase the intensity, frequency
and duration of meteorological drought (i.e., a measure of drought based only on rainfall
deficit), including based on longer periods with little rainfall as detailed in CSIRO & BoM
(2015). Itis also noted that there are various other ways that drought conditions can be defined
including agricultural drought measures that can include the influence of other weather



conditions (e.g., temperature, humidity, wind as well as evapotranspiration) in addition to
rainfall.

Fire weather indices such as the FFDI and FWI include drought measures in their
formulation that are more similar to measures of agricultural drought than meteorological
droughtin that they include the influence of other weather conditions in addition to rainfall.
For example, temperature is used together with rainfall as input to the Keetch-Byram Drought
Index (KBDI) (Keetch & Byram 1967) as often used as an input for the Drought Factor used
in the FFDI (notingthat indicesrelating to soil moisture such as KBDI are used for the Drought
Factor to indicate a proxy estimate of fuel availability based on moisture content). In contrast,
relative humidity, temperature and wind speed are used for the multiple different fuel moisture
measures that the formulation of the FWI System includes (Van Wager et al. 1974).
Consequently, in addition to rainfall and meteorological drought a broader range of factors can
be considered when examining potential future changes to fuel moisture content.

As noted in the section above on individual weather factors, mean temperatures as well
as the frequencyof extreme temperature eventsare projected to increase in the future with high
confidence, together with a general decrease in relative humidity, as well as little change or a
small decrease in wind speed. Considering these factors together with the projected increase in
meteorological drought (including increased frequency, intensity and duration) suggests a
likely increase in the frequency of very dry fuel conditions. However, there are considerable
uncertainties around projected changes in different types of drought as well as fuel moisture
responses to climate change, including as noted in Section 3 in relation to soil moisture
projections. Regional models may add value for some of these factors (e.g., more detail on land
surface processes, rainfall and orographic dependencies).

Combined weather conditions

Fire weather indices provide a useful way to combine a range of weather conditions
known to influence fire danger. The index values are typically calculated for each individual
time step (e.g., day) using data for each weather factor obtained froma single model (as is the
case for all results and references described in this report). This ensures the coherence of these
individual weather factors when applied for individual time steps from a single model. After
the fire weather index values have been calculated for each model, the ensemble statistics and
other derived products can then be produced, rather than using ensemble average values of
individual weather conditions as input to calculate the fire weather indices as that will lose the
coherence of individual weather factors (including noting the importance of this for
representing extremes of the fire weather index values). Similarly, the weather data should be
calibrated priorto calculatingthe fire weather indices, rather than calibrating the resultant index
values, to keep the relative balance of each weather factor correct for the index formulation.

The Forest Fire Danger Index (FFDI) is commonly used in Australia as a general
indicator of regional weather features associated with dangerous fire conditions. It shows broad
similarities to some other fire weather indices used aroundthe world such as the FWI including
forits sensitivity to different input ingredients (including being most sensitive to wind speed
followed by humidity and then temperature) (Dowdy & Mills 2012). Observational studies
have identified an increase in both the average FFDI and the frequency of high FFDI days over
much of southern Australia, particularly during the spring months, contributing to a
lengthening of the fire season (Dowdy 2018, Harris & Lucas 2019). These trends are
attributable at least in part to anthropogenic climate change, including as they combine several
different weather variables of which some (temperature) can be more easily attributed to
climate change than others (humidity and wind). Although a significant climate change signal



is able to be demonstrated already based on observations (Dowdy 2018; Harris & Lucas 2019),
the attribution of individual fire events to climate change is more challenging while noting one
recent study that has done this for the Black Summer of 2019/2020 (van Oldenborgh et al.

2021).

Projected changes in extreme daily FFDI were recently produced for Australia drawing
on a comprehensive range of modelling techniques, comprising an ensemble of projections
based on GCM outputaswell as two ensembles of projections based on dynamical downscaling
using regional model approaches (Dowdy et al. 2019b). Those projections indicate an increase
in the number of days with very high fire weather conditions (based on FFDI above 25) as well
asan increase inthe number of dayswith FFDI above the 95t percentile for 1990-2009), noting
lower agreementbetween models in some parts of eastern Australia. Similarly, future increases
were also projected for the number of days with FFDI above 50 and for the number of days
with FFDI above the 99t percentile for 1990-2009 (Dowdy 2020b). In addition to the
projections presented in those studies, plausible variation above and below such values is
indicated from previous studies based on different metrics and different modelling approaches
using FFDI. For example, relatively large increases have been derived using monthly mean
climate changes from 3 GCMs to scale observations and calculate changes in severe fire
weather days with FFDI >50 (CSIRO & BoM 2015), as well as other studies that indicate less
confidence in large increases in FFDI in the future (Clarke et al. 2016).

Projections of future climate have also been produced based on other fire weather
indices, including a global study that used the FWI (Abatzoglou et al. 2019) and reported no
emergent climate change signal in general for Australia based on the methods they presented.
Although increases were projected in some regions they were not statistically significantata
high confidence level noting the high interannual variability that can occur in weather and
climate conditions in Australia (such as due to the influence of large-scale modes of variability
including ENSO, discussed in sections below). Examples such as this based on FWI with little
change indicated, together with the range of FFDI projections from various studies noted
above, show that considerable differences can occur between different studies and highlight
the benefit of considering a broad variety of datasets, methods and studies (as is a goal of the
method applied here).

Very dangerous types of fire events have also been examined in relation to climate
change, includingextreme pyro-convection conditions (i.e., associated with thunderstorms that
form in fire plumes: pyroCbs). These occurred for the Black Saturday fires in 2009 and the
Canberra fires in 2003 fires as well as many examples during the 2019/20 Black Summer fires
(Fromm et al. 2006; McRae et al. 2013; Dowdy et al. 2017; Australian Government 2020).
Significant trends have been found for extreme pyro-convection risk factors including based
on historical data (Dowdy & Pepler 2018) and future projections (Di Virgilio et al. 2019;
Dowdy et al. 2019b). These studies indicate increased risk factors for parts of southern and
southeast Australia as well as decreases in some cases for other regions, including in parts of
eastern Australia. However, a range of uncertainties around future changes in convective
systems is also noted, such as the contrasting roles of increasing water vapour content and
decreasing lapse rates that can have various influences on risk factors associated with fire
behaviour and/or potential for convective systems to develop (with details also available in
Section 4 around uncertainties in future projected changes for convective systems).

Subtropical ridge; Blocking/ high pressure systems; Cold fronts

Details on various phenomena including the subtropical ridge, blocking highs and cold
fronts were provided previously (see Section 3), including observed and projected changes



during summer, as well as strengths and limitations of different modelling approaches.
Building on that information for those phenomena, details specific to fire weather conditions
are provided in this section.

The projected increase in the strength of the subtropical ridge could potentially act to
exacerbate the severity of some fire weather events in the future, especially in parts of southem
Australia. For example, the high-pressure systems that characterise the subtropical ridge can
lead to descendingdry airand clear skiesassociated with hotand dry conditions. High pressure
systemscan also circulate airaround inland Australia in some cases, as a dynamical mechanism
contributing to the build-up of extremely hot and dry air, while noting it is not currently known
if this process would change in the future.

Blocking (quasi-stationary) highs over the Tasman Sea can advect hot and dry air from
inland regions towards the more densely populated regions closer to the south and east coasts.
They can also interact with approaching cold fronts from the south which can intensify wind
speeds and contribute to increased severity of fire weather conditions in some cases. In
particular, the most severe fires in southeast Australia are typically associated with a strong
cold front approaching from the southwest, often with a high in the Tasman Sea, producing
very hot, dry and strong northwesterly winds in southeast Australia corresponding to very
dangerous fire weather conditions (Hasson et al. 2009; Reeder etal. 2015; Dowdy et al. 2017).
The passage of the front (or pre-frontal trough) comprises shifts in wind direction which can
change the direction of fire movement, i.e., the northern flank can become the new head fire
leading to rapid increases in the rate of area burnt. This can cause significant challenges for
firefighters (Cruz et al. 2012). While future projections of blocking and cold fronts are
generally uncertain, as detailed in Section 3, one study based on the older generation of climate
models (CMIP3) found a projected increase in frequency of such extreme events from 0.5 to
1-2 per year by the end of the 21stcentury (Hasson etal. 2009).

Modes of variability — ENSO, 10D and SAM

Details on modes of variability including ENSO, IOD and SAM in a changing climate
were provided in Section 3. Building on that information, aspects relating to fire weather
conditions are summarised here.

A recent paper summarised the seasonal influences of these three modes of variability
on average fire weather conditions in Australia (Harris & Lucas 2019), finding a strong
influence from ENSO during spring and summer in the east, from IOD during spring in the
southeast and east and from SAM during spring and summer in the east (with negative SAM
associated with more severe fire weather conditions such asin 2019/20). Thisis broadly similar
to various other studies that have also examined some of those aspects (Dowdy 2018; Abram
etal. 2021). Out of 21 significant bushfire seasons since 1950 in south-east Australia, 11 were
preceded by a positive IOD (Cai et al. 2009). In Victoria, particularly spring, a positive 10D
contributes to lower rainfall and higher temperatures, exacerbating dry conditions and
increasing the fuel availability leading into summer.

Sudden stratospheric warmings can also influence fire weather conditions in Australia,
including hotter and drier conditions for parts of eastern Australia during spring and early
summer which could also influence fuel moisture content during summer to some degree,
noting that the influence of such events can also be indicated through the SAM index (given
the association between polar stratospheric vortex conditions and measures of the Southem
Annular Mode) (Lim et al. 2019; 2021). The influence of climate change on sudden
stratospheric warming events is currently unknown.



Although the relationships between fire weather and modes of variability (including
ENSO, 10D and SAM conditions) have been examined in numerous previous studies (such as
those discussed in this section), this has not previously been examined in detail for more
extreme measures of fire weather, such that some new analysis on that is shown in Figure 5.1.
Correlations are presented between the number of days with FFDI > 99.5t percentile and
various modes of variability (using indices representing ENSO, SAM and 10D) showing
broadly similar featuresto those foraverage values of fire weather measures as described based
on previousstudies mentionedabove. In particular, fire weather conditions in the southeast and
east of Australia during summer show relationshipswith ENSO and IOD (significant positive
correlations), with SAM having some influence in central east regions (positive correlation)
butto a lesser degree than ENSO and I0D. There are some regions of negative correlation for
the SAM results in the more inland parts around central-east and southeast Australia, but those
correlations are not statistically significant. It is also noted that the influence of sudden
stratospheric warmings (relating to negative SAM conditions to some degree) can be associated
with more severe fire weather conditionsin central eastern Australia during spring (Lim et al.
2019), with this not expected to be represented in these results focussed on summer.

Correlations: SAM IOD

Number of
days > 99.5th
percentile of

FFDI

Figure 5.1: Correlations for the number of days with FFDI > 99.5% percentile during summer
and measures representing different modes of variability including ENSO (using the
NINO3.4 index), SAM (using the SAM index) and 10D (using the DMI index). These
correlations are all based on the period from 1979 to 2019, using one value for each summer
period (DJF). NINO3.4 and DMI data are attained from the NASA ESRL
(https://psl.noaa.gov/gcos_wgsp/Timeseries/) while SAM data are from
https://legacy.bas.ac.uk/met/gjma/sam.html. Pearson's correlation coefficient, r, is shown
with stippling corresponding to statistically significant values at the 95% confidence level (2-
tailed).

Additional factors- lightning ignitions as well as fuel load and type

Although the focus here is on extreme fire weather conditions, a brief summary is
provided here to note some of the other conditions that are important for the occurrence of
bushfires. This includes ignition sources as well as vegetation-related factors such as fuel load
and type.

Lightning was the ignition source for many of the largest and most damaging fires
during the 2019/2020 summer fire season in southeast Australia (Australian Government
2020). In addition to individual summers, lightning has been found to cause most of the total
areaburntwhen averaged over many fire seasons in southeast Australia (Dowdy & Mills 2012)
with lightning-ignited fires also being response for a large amount of the area burnt during the
Black Summer (Australian Government 2020). Human-caused ignitions are also a key cause



of fires in Australia, noting that projected future changes in that are highly uncertain. Given
the occurrence of lightning, the chance that it will cause a sustained ignition and develop into
a bushfire is strongly dependent on the amount of rainfall that accompanies it, leading to the
concept of 'dry lightning' as an important natural ignition source for bushfires (i.e., lightning
that occurs without significant rainfall). There is some indication of an increased frequency of
dry-lightning in some parts of southeast Australia in recent decades as well as decreases in
some other regions mor broadly for Australia (Dowdy 2020a). However, projections of future
changes in the occurrence of dry-lightning is a key knowledge gap in general for Australia,
affecting our understanding of potential changes to bushfire ignition and bushfire occurrence
throughout Australia.

Changes in vegetation characteristics including amount (fuel load) and type can also
influence fire hazards throughout Australia, noting that this is particularly important for
grassfires in the more northern and central regions of Australia (McKeon et al. 2009). There
are potential increases in fuel loads for various vegetation types associated with projected
increases in carbon dioxide concentrations, often referred to as the 'fertilisation effect' (Clarke
et al. 2016), where higher concentrations of atmospheric carbon dioxide promote vegetation
growth (Donohue et al., 2013). Global drylands have generally been greening over recent
decadesand the fertilisationeffecthas beenidentifiedasa causal factor in this greening (Burrell
etal. 2020). Consequently, an increase in some fuel-related fire risk factors may be considered
more likely than a decrease, while notingconsiderable uncertainties given the relatively limited
ability of current climate models to accurately simulate future changes in some risk factors
relating to fuel characteristics. Similarly, there are also large uncertainties around potential
future changes in fuel type, such as whether or not vegetation may shift to types that tend to
burn more frequently during this transition period to a warmer world, with no studies currently
available on this topic for Australia.

5.3 Summaries for historical information

Observed trends

Early studieson fire weather trends in Australia based onFFDI were notable to separate
the influences, if any, of climate change as different to natural variability such as concluded by
Clarkeetal. (2013). Usinga longer time period, differentmethods and a gridded analysis based
on observations, a statistically significant increase in FFDI has since been documented,
particularly during spring and summer in many parts of southern and eastern Australia, with
this being attributable at least in part to human-caused climate change including increased
temperatures and associated changes in relative humidity and fuel availability indicators
(Dowdy 2018). Similar results were also reported based on station data for individual locations,
finding that significant increases in FFDI have already occurred during spring and summer
differentto what can likely be explained based on natural variability alone (Harris & Lucas
2019). Studies using observations-based data and reanalysis have also examined other fire
weather indices in Australia, including the C-Haines index over the period back to 1979
(Dowdy & Pepler 2018), finding that statistically significant increases have already occurred
including during summer in some parts of southeast Australia, including for simultaneous
occurrences of dangerous near-surface and upper-level conditions (based on FFDI and C-
Haines). Such results have been confirmed in other recent climate change studies considering
arange of factors thatcan influence fire weather, including some analysis over palaeontological
time scales (Abram etal. 2021).

Model assessment



The ability of climate models to simulate aspects such as the seasonal cycle, observed
trends, spatial detail and extremes is important for helping to understand the degree of
confidence in future projected changes based on these models. Assessments as presented in
various studies (CSIRO & BoM 2015; Di Virgilio et al. 2019; Dowdy et al. 2019b) indicate
thatglobal modelsaswellas downscalingapproachesprovide areasonably good representation
of these aspects, including seasonal and regional variations through Australia as well as the
observed trends in general towards more dangerous weather conditions for bushfires in
Australia.

5.4  Summaries for projected changes

As discussed in sections above, previous studies have examined projected future
changes in measures of extreme such as FFDI exceeding 25 or 50 as well as FFDI exceeding
its historical 95t or 99t percentile. Here we examine projections of the 10-yr ARI of daily
FFDI from the available modelling approaches based on GCMs, CCAM, BARPA and
NARCIiM. These datasets all have QME calibration applied to the input variables for each
individual model prior to calculating the FFDI, with the ARI values then calculated from the
FFDI using a GEV approach (as was the case for temperature extremes in Section 3). The
results show increases in the severity of fire weather conditions projected from the historical
climate to the future projected climate during summer (i.e., December, January and February),
as represented by the 10-yr ARI value of daily FFDI. Some variation is apparent between the
different model ensembles in the magnitude of the increases, with somewhat larger increases
for NARCIIM in some regions, but with general agreement over these modelling approaches
on a projected future increase in these values corresponding to the 10-year ARI.
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Figure 5.2: Projections for values corresponding to the 10-year ARI for daily fire weather
conditions as represented by the FFDI (with the FFDI intended as a useful means of
combining different weather factors known to influence fire behaviour in Australia). This is
shown based on GCMs (left panels), CCAM (second to left panels), BARPA (second to right
panels) and NARCIIM (right panels), all calibrated using the QME method. Maps are shown
through Australia based on the model ensemble average in each case, presented for the
historical period (based on 1986-2005; upper panels) as well as for the future simulated
climate (based on 2040-2059 under a high emissions pathway RCP8.5 from CMIP5; lower
panels).

5.5 Lines of Evidence Table



Table 5.1: Lines of Evidence Table for extreme fire weather conditions, with a focus on
summer in the southeast and east of Australia. The degree of influence s listed in black,
followed by whether this information implies an increase (red), decrease (blue) or little
change (black) in the frequency and severity of extreme fire weather conditions, as well as by
increased uncertainty (purple) in the direction of change. The rows of information are notin

order of importance.

Physical processes and their measures

Individual weather
factors

Strong association. More extreme temperatures and heatwaves,
lower relative humidity; small decrease in wind speed.

Drought and fuel
moisture

Strong association. Projected increase in frequency of
meteorological droughtand very dry fuel conditions. Reasonable
confidence for some contributing factors from global models (but
potentially overestimated some conditions and considerable
uncertainties for other factors); regional models likely to add value.

Combined near-
surface weather
conditions, FFDI

Strong association. Projected increase in frequency of dangerous
conditions in general based on numerous studies; poor agreement
between models near east coast.

Combined near-

Strong association. Projected increase, but not statistically

surface weather significant, and only based on one study.

conditions, FWI

Upper-level Strong association (including extreme pyroconvection). Increased
conditions, C- frequency of dangerous conditions in southeast (including
Haines simultaneous occurrence with dangerous near-surface conditions)

and decrease in northeast.

Subtropical ridge

Moderate association in southeast. Potential increase.

Blocking Moderate association. Future change uncertain.

Fronts Moderate association. Future change uncertain.

ENSO Strong association. Uncertain future change; potential increase for
ENSO extremes (low confidence).

10D Strong association. Uncertain future change; potential increase for
IOD extremes (medium confidence).

SAM Strong association in central east. Positive trend in SAM reducing

dangerous fire weather in central east region (medium confidence).

Assessment for historical period

Seasonal cycle

Models reproduce the seasonal cycle and spatial variability well
(high confidence).

Historical trend

Increase from observations (medium confidence). Models reproduce
the trend well (medium confidence).

Projected future change

GCMs Increase (high confidence).

CCAM Increase (high confidence in general; medium near east coast).
NARCIIM Increase (high confidence in general; medium near east coast).
BARPA Increase (high confidence in general). Based on one model to date.

Additional factors

Lightning ignitions

Strong association. Influence of climate change largely uncertain
but increase more likely than decrease (low confidence).

Fuel load and type

Strong association. Influence of climate change largely uncertain
but increased fuel load more likely than decrease (low confidence).




5.6 Projections Likelihood Information

The Lines of Evidence Table shows considerable agreementon more dangerous fire
weather conditions in a warming climate for Australia, includingin relation to 10-year ARI
fire weather conditions in the southeast and east of Australia during summer (as is a key focus
here). Although there are some physical processes noted that add uncertainties, particularly
based on GCM projections data, the RCM approaches can help with the simulation of some of
these processes such that the moderate level of agreement between RCM approaches
(particularly in southern Australia but somewhat less so in parts of eastern Australia) helps add
some confidence for projected future changes. Observed trends and RCM simulations are
available for near-surface and higher-level conditions, including combining those different
levels using a compound event framework (Dowdy & Pepler 2018; Di Virgilio et al. 2019;
Dowdy et al. 2019b), showing increases in southern Australia with more variation between
results in eastern Australian including decreases being indicated in some regions. There s low
confidence for projected future changes in vegetation-related conditionssuch as fuel load and
type, as well as in ignition risk factors including the occurrence of dry lightning, noting that
fuel conditions and ignition sources are important factors for fire occurrence throughout
Australia (particularly in many central and northern regions).

Based on this assessment of a broad range of factors that can influence the occurrence
of extremely dangerous fire weather conditions, there is High Confidence in southern Australia
and Medium Confidence in parts of eastern Australia for the projected directionof change, with
a future increase in 10-year ARI fire weather conditions being Likely (i.e., 66-100%
probability) for southeastern and eastern Australia. Considering all of the review details in the
sections above, and noting the predominance of an increase from the Lines of Evidence Table,
projections for 10-year ARI extreme fire weather conditions in 2050 are developed here based
on combiningdatafrom various calibrated modellingapproaches including GCMs (4 ensemble
members), CCAM (5 ensemble members), BARPA (1 ensemble member) and NARCIIM (6
ensemble members).

FFDI data are available from these models and are the primary data source used here.
The contrasting modelling approaches are combined based on equally weighting the changes.
The ensemble median is used as a central estimate of the most probable projected change
(Figure 5.3). As an estimate of the range of plausible values, the second lowest value from the
ensemble is used for the 10t percentile and the second highest value is used from the ensemble
is used for the 90t percentile, with these values calculated individually at each grid cell
location. However, given some of the uncertainties and variations between different modelling
approaches and studies as noted in this section (including projections based on the FWI
showing smaller changes than for FFDI), the lower bound of the range provided here has been
modified to reflect the potential for lower values. This is done based on reducing any projected
increases for the 10t percentile by a factor of two (as a qualitative estimate based on expert
judgement). Forexample, atagiven grid-cell location, if the 10t percentile for the future period
was higher by a value of 8 as compared to the 1986-2005 value, it would be changed to only
be a value of 4 higher than the 1986-2005 value at that location. Projections for any regions
that show decreases for the 10t percentile are not changed. Only the 10 percentile is changed
to allow for lower values, but no lines of evidence suggest these FFDI projections data
systematically underestimate future increases such that the 90t percentile is unchanged and is
considered a plausible upper estimate for the future projected changes for these fire weather
conditions.
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Figure 5.3: Projected change in values corresponding to the 10-year ARI for daily fire weather
conditions during summer. Maps are shown through Australia for the historical period (based
on 1986-2005; upper panel), as well as for the future simulated climate (based on 2040-2059
under a high emissions pathway RCP8.5: lower panels) including a central estimate with lower
and upper estimates also provided. The data are based on the FFDI, with some modifications
based on considering the broader lines of evidence from Table 5.1.



6. Conclusion

The influence of climate change on extreme temperatures, winds and fire weather was
assessed using a standardised method. This method is based on a review and synthesis of a
broad range of information, designed to help guide the production of projections information
and confidence assessment. Calibrated data from GCMs and RCMs were used for temperature
and fire weather, with environmental diagnostics used for severe convective winds from
thunderstorms. The projections presented here are more extreme than examined in previous
studies (e.g., 10-yr ARI projections for fire weather and severe convective winds), with care
taken to communicate uncertainties and document the comprehensive lines of evidence
considered here. Data are available on request.

The nationally consistent calibrated projections presented here, includingbased on new
RCM data from BARPA, CCAM and NARCIiIM as well as GCMs, are intended to be of use
for a broad range of applications. This includes for applications such as improved planning and
helpingto build resilience in relation to the influence of anthropogenic climate change on future
hazards in Australia.
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